RAG 高级应用:基于 Nougat、HTML 转换与 GPT-4o 解析复杂 PDF 内嵌表格

一、前言

RAG(检索增强生成)应用最具挑战性的方面之一是如何处理复杂文档的内容,例如 PDF 文档中的图像和表格,因为这些内容不像传统文本那样容易解析和检索。前面我们有介绍过如何使用 LlamaIndex 提供的 LlamaParse 技术解析复杂PDF文档(文档中包含图片和表格)LlamaParse 技术整体来看,对于PDF文档常规文本的提取还是比较准确的,但对于表格内容的处理,检索准确率依然还存在比较大的空间,是否还有其它更好的方案来解决呢,今天我们来继续介绍几种与嵌入式表格相关的 RAG 策略,剖析文档解析和检索的技术细节,同时提供一些代码示例以便大家更好地理解其原理。此外,本文还将分析和比较这些策略的优缺点。

在正式开始之前,为了让新关注的小伙伴更全面地理解和应用RAG技术,我把之前写过的一些 RAG 技术相关的文章按照从基础到高级的顺序梳理了一个目录指引,方便大家循序渐进地快速了解 RAG 的精髓。

1.1、RAG 技术发展趋势:

《RAG 2.0》:RAG 技术迎来2.0时代!这篇文章介绍了新一代企业级AI系统RAG 2.0,它通过端到端优化语言模型和检索器,全面提升了传统RAG系统的性能,并在多个领域取得了突破性进展。想了解RAG技术的最新发展方向?这篇文章不容错过!

1.2、RAG 核心原理和关键技术:

《智能模型新篇章:RAG + Fine-Tuning 混合增强策略》

如何让大模型既博学又专精?这篇文章深入探讨了如何结合RAG和微调技术,让语言模型在特定领域表现更出色,并详细介绍了两种混合增强策略:RAFT 和 RoG,为构建更强大的AI系统提供了新的思路。

《RelayAttention:让大型语言模型更高效地处理长提示符》

大模型处理长文本效率低?这篇文章介绍了一种名为 RelayAttention 的全新注意力机制,它通过减少内存访问冗余,显著提升了大模型处理长文本的效率,让AI更“快”一步。

1.3、RAG 技术应用和实践:

《RankLLM:RAG架构下通过重排序实现精准信息检索》

如何让RAG系统找到最精准的答案?这篇文章介绍了一种基于大型语言模型的重排序方法 RankLLM,无需训练数据即可提升信息检索的精度,为构建高效RAG系统提供了新的思路。

《高级RAG检索中的五种查询重写策略》

如何让大模型更好地理解用户的提问?这篇文章介绍了五种查询重写策略(包括子问题查询、HyDE 查询转换、Query2doc、回溯提示和迭代检索生成),帮助你优化RAG系统中的信息检索过程,让AI更“懂”你。

《spRAG:一个处理密集非结构化文本复杂检索的 RAG 框架》

面对海量文本,如何精准定位关键信息?这篇文章介绍了专门处理密集非结构化文本的RAG框架 spRAG,它采用 AutoContext 和 RSE 技术,显著提升了处理复杂查询的准确性。

《LlamaParse:RAG中高效解析复杂PDF的最佳选择》

PDF文档解析难题如何解决?这篇文章介绍了高效的PDF解析技术 LlamaParse,它能够轻松处理复杂PDF文档(包含文本、图像和表格)的检索和上下文理解难题,并与LlamaIndex框架无缝集成,让信息提取更轻松。

1.4、特定领域RAG应用:

《RAFT:让大型语言模型更擅长特定领域的 RAG 任务》

如何让大模型在特定领域更专业?这篇文章介绍了一种名为 RAFT 的微调技术,它将RAG与特定领域的微调相结合,让大模型在特定领域的应用中表现更出色。

《特定领域 RAG 新突破:LlamaPack 实现 RAFT 论文方法》

想轻松创建特定领域RAG数据集?这篇文章介绍了如何使用 LlamaIndex 和 LlamaPack 来实现 RAFT 论文中的方法,简化数据集创建过程,让特定领域RAG应用开发更便捷。

《RAGFlow:基于OCR和文档解析的下一代 RAG 引擎》

想体验功能强大的开源RAG引擎?这篇文章介绍了 RAGFlow,它基于深度文档理解技术,支持多种格式的文档处理,并提供可视化界面和人工干预功能,为构建高效RAG系统提供了新的选择。

二、解析和检索嵌入式表格

解析 PDF 文件中的嵌入式表格一直是一项非常有挑战的技术。这是因为 PDF 文件中的表格可能使用不同的编码和字体,甚至可能以图像的形式存在,需要 OCR(光学字符识别)技术才能识别。此外&#

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

技术狂潮AI

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值