HDU 1789 - Doing Homework again

本文介绍了一个关于作业安排的问题,使用贪心算法来最小化因延期交作业而被扣除的成绩分数。通过按扣分多少及截止日期排序作业,合理安排完成顺序。

Time Limit: 1000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 13421    Accepted Submission(s): 7816


Problem Description
Ignatius has just come back school from the 30th ACM/ICPC. Now he has a lot of homework to do. Every teacher gives him a deadline of handing in the homework. If Ignatius hands in the homework after the deadline, the teacher will reduce his score of the final test. And now we assume that doing everyone homework always takes one day. So Ignatius wants you to help him to arrange the order of doing homework to minimize the reduced score.
 

Input
The input contains several test cases. The first line of the input is a single integer T that is the number of test cases. T test cases follow.
Each test case start with a positive integer N(1<=N<=1000) which indicate the number of homework.. Then 2 lines follow. The first line contains N integers that indicate the deadlines of the subjects, and the next line contains N integers that indicate the reduced scores.
 

Output
For each test case, you should output the smallest total reduced score, one line per test case.
 

Sample Input
3 3 3 3 3 10 5 1 3 1 3 1 6 2 3 7 1 4 6 4 2 4 3 3 2 1 7 6 5 4
 

Sample Output
0 3 5

    第一步按照reduced_score从大到小排序,如果reduced_score相等,则按照deadline从小到大排。
    然后开始选择,让当前的课排在其deadline上面,如果这一天已经被占用了,
	那么就往前循环,有位置了就安排,没了就sum+=reduced_score

#include<cstdio>
#include<algorithm>
using namespace std;
typedef struct{
	int deadline;
	int reduced_score;
}type;
type homework[1003];
int day[1100];
bool cmp(type a,type b)
{
	if(a.reduced_score == b.reduced_score) return a.deadline < b.deadline;
	return a.reduced_score > b.reduced_score;
}
int main()
{
	int t,n;
	scanf("%d",&t);
	while(t--){
		scanf("%d",&n);
		int deadline_max=-1;
		for(int i=1;i<=n;i++){
			scanf("%d",&homework[i].deadline);
			if(homework[i].deadline > deadline_max) deadline_max=homework[i].deadline;
		}
		for(int i=1;i<=n;i++) scanf("%d",&homework[i].reduced_score);
		sort(homework+1,homework+n+1,cmp);

		int reduced_score_sum=0;
		memset(day,0,sizeof(day));
		for(int i=1;i<=n;i++){
			int j;
			for(j=homework[i].deadline;j>=1;j--){
				if(day[j]==0){
					day[j]=1;
					break;
				}
			}
			if(j==0) reduced_score_sum+=homework[i].reduced_score; //反正分也扣了,一百年之后再做也没事,就不用去管哪天做了 
		}
		printf("%d\n",reduced_score_sum); 
	}
}


我觉得这才是名副其实的贪心……所有的作业都想办法拖到最后一天做,没办法了就往前算算有没有那天可以做的,实在不行就只能扣分了……

跟网型逆变器小干扰稳定性分析与控制策略优化研究(Simulink仿真实现)内容概要:本文围绕跟网型逆变器的小干扰稳定性展开分析,重点研究其在电力系统中的动态响应特性及控制策略优化问题。通过构建基于Simulink的仿真模型,对逆变器在不同工况下的小信号稳定性进行建模与分析,识别系统可能存在的振荡风险,并提出相应的控制优化方法以提升系统稳定性和动态性能。研究内容涵盖数学建模、稳定性判据分析、控制器设计与参数优化,并结合仿真验证所提策略的有效性,为新能源并网系统的稳定运行提供理论支持和技术参考。; 适合人群:具备电力电子、自动控制或电力系统相关背景,熟悉Matlab/Simulink仿真工具,从事新能源并网、微电网或电力系统稳定性研究的研究生、科研人员及工程技术人员。; 使用场景及目标:① 分析跟网型逆变器在弱电网条件下的小干扰稳定性问题;② 设计并优化逆变器外环与内环控制器以提升系统阻尼特性;③ 利用Simulink搭建仿真模型验证理论分析与控制策略的有效性;④ 支持科研论文撰写、课题研究或工程项目中的稳定性评估与改进。; 阅读建议:建议读者结合文中提供的Simulink仿真模型,深入理解状态空间建模、特征值分析及控制器设计过程,重点关注控制参数变化对系统极点分布的影响,并通过动手仿真加深对小干扰稳定性机理的认识。
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值