HDU 2955 - Robberies

本文介绍了一个基于动态规划的算法,用于模拟银行抢劫的情景。该算法通过计算不同银行抢劫组合的最大收益及其对应的被捕风险,帮助主角Roy在限定风险内实现利益最大化。

Problem Description
The aspiring Roy the Robber has seen a lot of American movies, and knows that the bad guys usually gets caught in the end, often because they become too greedy. He has decided to work in the lucrative business of bank robbery only for a short while, before retiring to a comfortable job at a university.


For a few months now, Roy has been assessing the security of various banks and the amount of cash they hold. He wants to make a calculated risk, and grab as much money as possible.


His mother, Ola, has decided upon a tolerable probability of getting caught. She feels that he is safe enough if the banks he robs together give a probability less than this.
 

Input
The first line of input gives T, the number of cases. For each scenario, the first line of input gives a floating point number P, the probability Roy needs to be below, and an integer N, the number of banks he has plans for. Then follow N lines, where line j gives an integer Mj and a floating point number Pj . 
Bank j contains Mj millions, and the probability of getting caught from robbing it is Pj .
 

Output
For each test case, output a line with the maximum number of millions he can expect to get while the probability of getting caught is less than the limit set.

Notes and Constraints
0 < T <= 100
0.0 <= P <= 1.0
0 < N <= 100
0 < Mj <= 100
0.0 <= Pj <= 1.0
A bank goes bankrupt if it is robbed, and you may assume that all probabilities are independent as the police have very low funds.
 

Sample Input
3 0.04 3 1 0.02 2 0.03 3 0.05 0.06 3 2 0.03 2 0.03 3 0.05 0.10 3 1 0.03 2 0.02 3 0.05
 

Sample Output
2 4 6


菜鸡一下子不敢搞滚动数组……先搞一个二维数组的好了……

//f[i][j]表示前i个银行里抢劫钱j后的最高安全概率
//f[i][j] = max( f[i-1][j] , f[i-1][j-money[i]]*safe_p[i] ) 
//我们已知 1:前i-1个银行里抢劫钱j的最高安全概率,以及 2:前i-1个银行里抢劫(j-当前这个第i号银行的money钱)这么多钱的最高安全概率
//然后我们把 2 这个概率乘上抢劫当前第i号银行的安全概率,就得到 3:抢了当前第i号银行后的安全概率
//我们比较一下1、3的概率哪个大,就是f[i][j]
//最后我们从 j=(max_money....0) 遍历f[n][j],找到第一个出现的j,使得f[n][j]满足f[n][j]>least_safe_p,此时的j就是answer 

//max_money:所有的银行加起来的钱
//least_safe_p:Roy想保证的最低安全概率

#include<cstdio>
#include<cstring>
#define max(a,b) a>b?a:b 
#define N 103
float safe_p[N],f[N][N*N];
int money[N];
int main()
{
	int t;
	scanf("%d",&t);
	while(t--){
		float least_safe_p;int n;
		scanf("%f%d",&least_safe_p,&n);least_safe_p=1-least_safe_p;
		
		int max_money=0;
		for(int i=1;i<=n;i++) {
			scanf("%d%f",&money[i],&safe_p[i]);
			safe_p[i]=1-safe_p[i];
			max_money+=money[i];
		}

		for(int i=0;i<=n;i++) f[i][0]=1;
		for(int i=1;i<=n;i++){
			for(int j=0;j<=max_money;j++){
				if(j<money[i]) f[i][j]=f[i-1][j];
				else f[i][j]=max( f[i-1][j] , f[i-1][j-money[i]]*safe_p[i] );
			}
		}
		//for(int j=0;j<=max_money;j++) printf("%f\n",f[n][j]);
		for(int j=max_money;j>=0;j--){
			if(f[n][j]>=least_safe_p) {printf("%d\n",j);break;}
		}
	}
	return 0;
}


【电动汽车充电站有序充电调度的分散式优化】基于蒙特卡诺和拉格朗日的电动汽车优化调度(分时电价调度)(Matlab代码实现)内容概要:本文介绍了基于蒙特卡洛和拉格朗日方法的电动汽车充电站有序充电调度优化方案,重点在于采用分散式优化策略应对分时电价机制下的充电需求管理。通过构建数学模型,结合不确定性因素如用户充电行为和电网负荷波动,利用蒙特卡洛模拟生成大量场景,并运用拉格朗日松弛法对复杂问题进行分解求解,从而实现全局最优或近似最优的充电调度计划。该方法有效降低了电网峰值负荷压力,提升了充电站运营效率与经济效益,同时兼顾用户充电便利性。 适合人群:具备一定电力系统、优化算法和Matlab编程基础的高校研究生、科研人员及从事智能电网、电动汽车相关领域的工程技术人员。 使用场景及目标:①应用于电动汽车充电站的日常运营管理,优化充电负荷分布;②服务于城市智能交通系统规划,提升电网与交通系统的协同水平;③作为学术研究案例,用于验证分散式优化算法在复杂能源系统中的有效性。 阅读建议:建议读者结合Matlab代码实现部分,深入理解蒙特卡洛模拟与拉格朗日松弛法的具体实施步骤,重点关注场景生成、约束处理与迭代收敛过程,以便在实际项目中灵活应用与改进。
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值