Python机器学习笔记(二、监督学习算法基础)

一、分类与回归

监督机器学习问题主要有两种,分别叫作分类(classification)回归(regression)

区分分类任务和回归任务有一个简单方法,就是问一个问题:输出是否具有某种连续性。 如果在可能的结果之间具有连续性,那么它就是一个回归问题;不存在连续性,则一般是分类问题。

二、泛化、过拟合与欠拟合 

在监督学习中,在训练数据上构建模型,然后能够对没见过的新数据(这些新数据与训练集具有相同的特性)做出准确预测。如果模型能够对没见过的数据做出准确预测,我们就说它能够从训练集泛化(generalize)到测试集。我们想要构建一个泛化精度尽可能高的模型。判断一个算法在新数据上表现好坏的唯一度量,就是在测试集上的评估。

过拟合(Overfitting)‌是指模型在训练数据上表现优异,但在新的数据集上性能不佳的现象。这是因为过拟合模型过度关注训练数据

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

FreedomLeo1

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值