【Python】 堆优化的dijkstra:困难Leetcode 2642. 设计可以求最短路径的图类

题目描述

给你一个有 n 个节点的 有向带权 图,节点编号为 0 到 n - 1 。图中的初始边用数组 edges 表示,其中 edges[i] = [fromi, toi, edgeCosti] 表示从 fromi 到 toi 有一条代价为 edgeCosti 的边。

请你实现一个 Graph 类:
Graph(int n, int[][] edges) 初始化图有 n 个节点,并输入初始边。
addEdge(int[] edge) 向边集中添加一条边,其中 edge = [from, to, edgeCost] 。数据保证添加这条边之前对应的两个节点之间没有有向边。
int shortestPath(int node1, int node2) 返回从节点 node1 到 node2 的路径 最小 代价。如果路径不存在,返回 -1 。一条路径的代价是路径中所有边代价之和。

示例 1:
输入:
[“Graph”, “shortestPath”, “shortestPath”, “addEdge”, “shortestPath”]
[[4, [[0, 2, 5], [0, 1, 2], [1, 2, 1], [3, 0, 3]]], [3, 2], [0, 3], [[1, 3, 4]], [0, 3]]
输出:
[null, 6, -1, null, 6]
在这里插入图片描述

代码

普通dijkstra

class Graph:

    def __init__(self, n: int, edges: List[List[int]]):
        self.adj_hash = {
   
   }
        self.n = n

        for i in range(n): self.adj_hash[i] = {
   
   }
        for edge in edges: self.addEdge(edge)


    def addEdge(self, edge: List[int]) -> None:
        self.adj_hash[edge[0]]
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值