戴森选择fone以‘供应链分析’拉动数字管理价值

戴森中国与fone合作开展供应链分析项目,旨在提高管理效率、优化预测体系,通过统一数据标准、搭建业务模型和输出管理报表,实现供应链精细化管理,增强企业竞争力。

日前,戴森中国供应链部门与fone合作开展了供应链分析项目,以提高管理效率、优化预测体系为目标,进行了一系列供应链业务体系梳理及分析系统建设工作。

 

作为一家英国创新科技公司,戴森以设计与研发简化生活的产品对消费者形成吸引力,在中国已经形成了一套涵盖产品进口、入库、分销、直营、售后等业务环节的管理体系,线上销售渠道除了品牌官网外,也涵盖了天猫、京东和苏宁等主流电商平台,从2015年到2018年,戴森在中国市场的规模增长了十倍。

 

随之而来的问题是,现行的业务管理模式及数据沉淀情况均不能满足业务的高速发展,最迫切需要改变的就是供应链管理,因此戴森启动供应链分析项目,以提升供应链的管理效率、优化供应链的计划预测体系,丰富管理层经营决策手段,用精细化管理增强企业综合竞争力。

 

统一数据标准

戴森部门间的协同难度高的原因,主要来自于主数据未能统一,各部门做数据统计时口径不一致。fone将通过梳理主数据,建立主数据模板、以接口连接明晰数据来源,确认主数据流程。这能有效保证在目前戴森数据量持续增长的情况下,保证基础数据的准确性。

 

搭建业务模型

在数据口径统一、数据来源清晰的情况下,建立标准化的业务指标体系,也能够明确数据及业务流程,将指标责任下发到具体部门,以合理的业务模型解决管理分散等问题。

 

输出管理报表

最终根据需求形成进口、库存、销售等日常业务报表及各类分析报表,及时了解进口情况、库存状态,随时调取所需信息。

通过供应链分析系统的建立,fone将协助戴森建立标准、搭设平台;下一阶段,借由统一的数据仓库与分析平台,纳入财务、销售等更多业务体系,形成核心数据智能化,实现助决策、防风险、提效益的数据赋能作用,稳步推进“初期建基础,中期实现高效运营,长期作为利润保障”的目标。

fone将以持续稳定的运维服务、持续优化的应用能力,陪伴戴森在中国业务的持续增长。

人们在日常生活中经常会遇到这样的情况:超市的经营者希望将经常被同时购买的商品放在一起,以增加销售;保险公司想知道购买保险的客户一般具有哪些特征;医学研究人员希望从已有的成千上万份病历中找出患某种疾病的病人的共同特征,从而为治愈这种疾病提供一些帮助……对于以上问题,现有信息管理系统中的数据分析工具无法给出答案。因为无论是查询、统计还是报表,其处理方式都是对指定的数据进行简单的数字处理,而不能对这些数据所包含的内在信息进行提取。随着信息管理系统的广泛应用和数据量激增,人们希望能够提供更高层次的数据分析功能。为此,数据仓库应运而生。   数据仓库的概念及特点   数据仓库概念始于本世纪80年代中期,首次出现是在号称“数据仓库之父”William H.Inmon的《建立数据仓库》一书中。随着人们对大型数据系统研究、管理、维护等方面的深刻识认和不断完善,在总结、丰富、集中多行企业信息的经验之后,为数据仓库给出了更为精确的定义,即“数据仓库是在企业管理和决策中面向主题的、集成的、与时间相关的、不可修改的数据集合”。   数据仓库并没有严格的数学理论基础,也没有成熟的基本模式,且更偏向于工程,具有强烈的工程性。因此,在技术上人们习惯于从工作过程等方面来分析,并按其关键技术部份分为数据的抽取、存储与管理以及数据的表现等三个基本方面。   ⑴数据的抽取:数据的抽取是数据进入仓库的入口。由于数据仓库是一个独立的数据环境,它需要通过抽取过程将数据从联机事务处理系统、外部数据源、脱机的数据存储介质中导入到数据仓库。数据抽取在技术上主要涉及互连、复制、增量、转换、调度和监控等方面。数据仓库中的数据并不要求与联机事务处理系统保持实时同步,因此数据抽取可以定时进行,但多个抽取操作执行的时间、相互的顺序、成败对数据仓库中信息的有效性则至关重要。   ⑵存储和管理:数据仓库的真正关键是数据的存储和管理。数据仓库的组织管理方式决定了它有别于传统数据库,同时也决定了其对外部数据的表现形式。要决定采用什么产品和技术来建立数据仓库的核心,则需要从数据仓库的技术特点着手分析。   ⑶数据的表现:数据表现实际上相当于数据仓库的门面,其性能主要集中在多维分析、数理统计和数据挖掘方面。而多维分析又是数据仓库的重要表现形式,近几年来由于互联网的发展,使得多维分析领域的工具和产品更加注重提供基于Web前端联机分析界面,而不仅仅是在网上发布数据。   提到数据仓库,人们难免会想到仅有一字之差的数据库,那么,数据仓库和我们经常提到的数据库有哪些区别呢?为什么要使用数据仓库呢?
该数据集通过合成方式模拟了多种发动机在运行过程中的传感器监测数据,旨在构建一个用于机械系统故障检测的基准资源,特别适用于汽车领域的诊断分析。数据按固定时间间隔采集,涵盖了发动机性能指标、异常状态以及工作模式等多维度信息。 时间戳:数据类型为日期时间,记录了每个数据点的采集时刻。序列起始于2024年12月24日10:00,并以5分钟为间隔持续生成,体现了对发动机运行状态的连续监测。 温度(摄氏度):以浮点数形式记录发动机的温度读数。其数值范围通常处于60至120摄氏度之间,反映了发动机在常规工况下的典型温度区间。 转速(转/分钟):以浮点数表示发动机曲轴的旋转速度。该参数在1000至4000转/分钟的范围内随机生成,符合多数发动机在正常运转时的转速特征。 燃油效率(公里/升):浮点型变量,用于衡量发动机的燃料利用效能,即每升燃料所能支持的行驶里程。其取值范围设定在15至30公里/升之间。 振动_X、振动_Y、振动_Z:这三个浮点数列分别记录了发动机在三维空间坐标系中各轴向的振动强度。测量值标准化至0到1的标度,较高的数值通常暗示存在异常振动,可能与潜在的机械故障相关。 扭矩(牛·米):以浮点数表征发动机输出的旋转力矩,数值区间为50至200牛·米,体现了发动机的负载能力。 功率输出(千瓦):浮点型变量,描述发动机单位时间内做功的速率,取值范围为20至100千瓦。 故障状态:整型分类变量,用于标识发动机的异常程度,共分为四个等级:0代表正常状态,1表示轻微故障,2对应中等故障,3指示严重故障。该列作为分类任务的目标变量,支持基于传感器数据预测故障等级。 运行模式:字符串类型变量,描述发动机当前的工作状态,主要包括:怠速(发动机运转但无负载)、巡航(发动机在常规负载下平稳运行)、重载(发动机承受高负荷或高压工况)。 数据集整体包含1000条记录,每条记录对应特定时刻的发动机性能快照。其中故障状态涵盖从正常到严重故障的四级分类,有助于训练模型实现故障预测与诊断。所有数据均为合成生成,旨在模拟真实的发动机性能变化与典型故障场景,所包含的温度、转速、燃油效率、振动、扭矩及功率输出等关键传感指标,均为影响发动机故障判定的重要因素。 资源来源于网络分享,仅用于学习交流使用,请勿用于商业,如有侵权请联系我删除!
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值