Problem
Given a two-dimensional array of positive and negative integers, a sub-rectangle is any contiguous sub-array of size 1 x 1 or greater located within the whole array. The sum of a rectangle is the sum of all the elements in that rectangle. In this problem the
sub-rectangle with the largest sum is referred to as the maximal sub-rectangle.
As an example, the maximal sub-rectangle of the array:
0 -2 -7 0
9 2 -6 2
-4 1 -4 1
-1 8 0 -2
is in the lower left corner:
9 2
-4 1
-1 8
and has a sum of 15.
The input consists of an N x N array of integers. The input begins with a single positive integer N on a line by itself, indicating the size of the square two-dimensional array. This is followed by N 2 integers separated by whitespace (spaces and newlines).
These are the N 2 integers of the array, presented in row-major order. That is, all numbers in the first row, left to right, then all numbers in the second row, left to right, etc. N may be as large as 100. The numbers in the array will be in the range [-127,127].
Output
Output the sum of the maximal sub-rectangle.
Example
Input
4
0 -2 -7 0 9 2 -6 2
-4 1 -4 1 -1
8 0 -2
Output
15
将任意两行之间列元素相加,得到数列。求最大和子矩阵就等价于求最大和子序列。
#include <iostream>
#include <cstring>
using namespace std;
#define MAX 101
int array[MAX][MAX], n, rows_sum[MAX];
int find_best(){
int sum = 0, max = 0;
for(int i = 0; i < n; i++){
sum += rows_sum[i];
if( sum < 0) sum = 0;
if( sum > max) max = sum;
}
return max;
}
int main(){
int max;
while(cin>>n){
for(int row = 0; row < n; row++)
for(int col = 0; col < n; col++)
cin>>array[row][col];
max = 0;
for(int start_row = 0; start_row < n; start_row++){
memset(rows_sum, 0, sizeof(rows_sum));
for(int row = start_row; row < n; row++){
for(int col = 0; col < n; col++){
rows_sum[col] += array[row][col];
}
if( max < find_best()) max = find_best();
}
}
cout<<max;
}
return 0;
}