红黑树的代码实现,实现了红黑树的查找和插入,删除比较复杂后面弄
以下为C++代码,后面有解析。主要是选择操作和情况判断
#pragma once
#include <iostream>
#include "main_avl.hpp" //单独跑该程序,可以注释这行,rbtree() 改成main去掉 inline即可
constexpr auto black = 0;
constexpr auto red = 1;
constexpr auto left_uncle = 0;
constexpr auto right_uncle = 1;
template <class T>
class rbt_node {
public:
rbt_node(T tvalue, int col = red) :color(col), value(tvalue) {
this->rchild = nullptr;
this->lchild = nullptr;
this->parent = nullptr;
}
~rbt_node() = default; //析构如何实现
rbt_node* rchild;
rbt_node* lchild;
rbt_node* parent; //父节点指针增加了空间开销
int color=red;
T value;
};
template <class T>
class rbt_tree {
public:
rbt_tree(rbt_node<T>* root_node) {
rbt_root = root_node;
rbt_root->color = black;
}
rbt_tree() = default;
~rbt_tree() = default;
/*以下为针对树的操作的实现*/
//查找
rbt_node<T>* find(rbt_node<T>* root, T key) {
// 按照BST原则查询节点
if (root == nullptr) return root;
if (root->value > key) {
return this->find(root->lchild, key);
}
else if (root->value < key) {
return this->find(root->rchild, key);
}
else {
cout << "key= " << key << " is finded" << endl;
return root;
}
}
// 新增节点,循环遍历找到叶子节点加入
void push_node(rbt_node<T>* root, rbt_node<T>* new_node) {
rbt_node<T>* temp = find(root, new_node->value);
if (temp != nullptr) { cout << "node is already exist" << endl; return; }
root = rb_insert(root, new_node);
deal_unbalance(new_node);
}
rbt_node<T>* rb_insert(rbt_node<T>* root, rbt_node<T>* new_node) {
if (root == nullptr) return new_node;
// 按照BST原则插入新节点
new_node->parent = root;
if (root->value > new_node->value) {
root->lchild = rb_insert(root->lchild, new_node);
}
else if (root->value < new_node->value) {
root->rchild = rb_insert(root->rchild, new_node);
}
return root;
}
//判断不平衡类型,并处理
void deal_unbalance(rbt_node<T>* new_node) {
if (new_node->parent == nullptr) {
new_node->color = black;
this->rbt_root = new_node;
return ;
}
if (new_node->parent->color == black) return ;
int flag = right_uncle; //0表示uncle为grant的左孩子
rbt_node<T>* proot = new_node->parent;
rbt_node<T>* uncle = proot->parent->lchild == proot ? proot->parent->rchild : (flag = left_uncle, proot->parent->lchild);
cout << "--*-- " ;
if (flag) cout << "right" << endl;else cout << "left" << endl;
if (uncle == nullptr || uncle->color == black) {
if (flag == right_uncle) {
if (proot->rchild != nullptr && proot->rchild == new_node) {
new_node->color = black;
proot->parent->color = red;
leftright_rotation(proot);
cout << " leftright_rotation " << endl;
}
else {
proot->color = black;
proot->parent->color = red;
right_rotation(proot->parent);
cout << " right_rotation " << endl;
}
}
else {
if (proot->lchild != nullptr && proot->lchild == new_node) {
new_node->color = black;
proot->parent->color = red;
rightleft_rotation(proot);
cout << " rightleft_rotation " << endl;
}
else {
proot->color = black;
proot->parent->color = red;
left_rotation(proot->parent);
cout << " left_rotation " << endl;
}
}
}
else {
proot->color = black;
proot->parent->color = red;
uncle->color = black;
cout << "情况一、二变三节点" << proot->parent->value << endl;
deal_unbalance(proot->parent);
}
}
// 删除节点循环遍历更新
// 左旋转
void left_rotation(rbt_node<T>* rootp) {
rbt_node<T>* temp = rootp->rchild;
rootp->rchild = temp->lchild;
temp->lchild = rootp;
temp->parent = rootp->parent;
rootp->parent = temp;
getparent(temp, rootp);
}
// 右旋转
void right_rotation(rbt_node<T>* rootp) {
rbt_node<T>* temp = rootp->lchild;
rootp->lchild = temp->rchild;
temp->rchild = rootp;
temp->parent = rootp->parent;
rootp->parent = temp;
getparent(temp,rootp);
}
//左右旋转
void leftright_rotation( rbt_node<T>* rootp) {
left_rotation(rootp);
right_rotation(rootp->parent->parent);
}
//右左旋转
void rightleft_rotation( rbt_node<T>* rootp) {
right_rotation(rootp);
left_rotation(rootp->parent->parent);
}
void getparent(rbt_node<T>* temp, rbt_node<T>* lost_ptr) {
if (temp->parent != nullptr) {
if (temp->parent->rchild == lost_ptr)
temp->parent->rchild = temp;
else temp->parent->lchild = temp;
}
else this->rbt_root = temp;
}
//前序遍历,递归
void pre_traverse(rbt_node<T>* root, int ex_dep = 0) {
if (root == nullptr) return;
cout << root->value << " " << root->color << endl;
pre_traverse(root->lchild, ex_dep);
pre_traverse(root->rchild, ex_dep);
}
//中序遍历
void in_traverse(rbt_node<T>* root, int ex_dep = 0) {
if (root == nullptr) return;
in_traverse(root->lchild, ex_dep);
cout << root->value << " " << root->color << endl;
in_traverse(root->rchild, ex_dep);
}
//后序遍历
void past_traverse(rbt_node<T>* root, int ex_dep = 0) {
if (root == nullptr) return;
past_traverse(root->lchild, ex_dep);
past_traverse(root->rchild, ex_dep);
cout << root->value << " " << root->color << endl;
}
public:
rbt_node<T>* rbt_root = nullptr;
};
inline int Rbtree() {
rbt_node<int> root_node(100);
rbt_tree<int> s(&root_node);
rbt_node<int> new_n1(13), new_n2(15), new_n3(15), new_n4(35), new_n5(45),new_n6(72), new_n7(82), new_n8(92), new_n9(87), new_n10(52);
s.push_node(s.rbt_root, &new_n5);
cout << endl; s.pre_traverse(s.rbt_root);
s.push_node(s.rbt_root, &new_n6);
cout << endl; s.pre_traverse(s.rbt_root);
s.push_node(s.rbt_root, &new_n2);
s.push_node(s.rbt_root, &new_n1);
cout << endl; s.pre_traverse(s.rbt_root);
s.push_node(s.rbt_root, &new_n3); //因为是地址传递如果是同一个对象插入多次,会改变new的父节点
cout << endl; s.pre_traverse(s.rbt_root);
s.push_node(s.rbt_root, &new_n9);
cout << endl;s.pre_traverse(s.rbt_root);
s.push_node(s.rbt_root, &new_n8);
cout << endl; s.pre_traverse(s.rbt_root);
s.push_node(s.rbt_root, &new_n1);
s.push_node(s.rbt_root, &new_n7);
cout << endl; s.pre_traverse(s.rbt_root);
s.push_node(s.rbt_root, &new_n4);
cout << endl; s.pre_traverse(s.rbt_root);
s.push_node(s.rbt_root, &new_n10);
cout << endl; s.pre_traverse(s.rbt_root);
int key = 12;
rbt_node<int>* temp = s.find(s.rbt_root, key);
cout << "Hello world! key= " << key << endl;
if(temp==nullptr) cout <<" key = " << key<<" not find" << endl;
else cout << " key = " << key << " is finded " << " color= " << temp->color << endl;
//s.rbt_root = s.pop_node(s.rbt_root, 12);
//s.pre_traverse(s.rbt_root);
//cout << "--------***-------" << endl;
//s.in_traverse(s.rbt_root);
//cout << "--------***-------" << endl;
//s.past_traverse(s.rbt_root);
//s.pop_node(s.rbt_root, 15);
return 0;
}