链接
题解
看起来是一个很显然的矩阵乘法,然后看起来很显然的时间复杂度过大
但是写出来之后,发现这是一个循环矩阵
两个循环矩阵乘起来还是循环矩阵,所以只需要 O ( n 2 ) O(n^2) O(n2)计算第一行就可以了
代码
#include <bits/stdc++.h>
#include <ext/pb_ds/assoc_container.hpp>
#include <ext/pb_ds/tree_policy.hpp>
#define iinf 0x3f3f3f3f
#define linf (1ll<<60)
#define eps 1e-8
#define maxn 1000010
#define maxe 1000010
#define cl(x) memset(x,0,sizeof(x))
#define rep(i,a,b) for(i=a;i<=b;i++)
#define drep(i,a,b) for(i=a;i>=b;i--)
#define em(x) emplace(x)
#define emb(x) emplace_back(x)
#define emf(x) emplace_front(x)
#define fi first
#define se second
#define de(x) cerr<<#x<<" = "<<x<<endl
using namespace std;
using namespace __gnu_pbds;
typedef long long ll;
typedef pair<int,int> pii;
typedef pair<ll,ll> pll;
ll read(ll x=0)
{
ll c, f(1);
for(c=getchar();!isdigit(c);c=getchar())if(c=='-')f=-f;
for(;isdigit(c);c=getchar())x=x*10+c-0x30;
return f*x;
}
#define mod 1000000007ll
struct Matrix
{
ll n, m, a[210][210];
ll* operator[](ll x){return a[x];}
Matrix(ll x, ll y)
{
n=x, m=y;
ll i, j;
rep(i,1,n)rep(j,1,m)a[i][j]=0;
}
Matrix(vector<vector<ll>> v)
{
ll i, j;
n=v.size(), m=v[0].size();
rep(i,1,n)rep(j,1,m)a[i][j]=v[i-1][j-1]%mod;
}
friend Matrix operator*(Matrix a, Matrix b)
{
Matrix t(a.n,b.m);
ll i, j, k;
rep(i,1,t.n)rep(k,1,a.m)rep(j,1,t.m)(t[i][j]+=a[i][k]*b[k][j])%=mod;
return t;
}
void show()
{
ll i, j;
cerr<<"Matrix "<<n<<"*"<<m<<":"<<endl;
for(i=1;i<=n;i++)
{
for(j=1;j<=m;j++)cerr<<a[i][j];
cerr<<endl;
}
}
};
Matrix mult(Matrix a, Matrix b)
{
ll n = a.n, i, j, k;
Matrix c(n,n);
rep(j,1,n)rep(k,1,n)
{
(c[1][j] += a[1][k]*b[j][k]) %=mod;
}
rep(i,2,n)
{
c[i][1] = c[i-1][n];
rep(j,2,n)c[i][j] = c[i-1][j-1];
}
return c;
}
Matrix pow(Matrix a, ll b)
{
Matrix ans(a.n,a.n), t=a;
ll i, n=a.n;
rep(i,1,n)ans[i][i]=1;
for(;b;b>>=1,t=mult(t,t))if(b&1)ans=mult(ans,t);
return ans;
}
int main()
{
ll T=read();
while(T--)
{
ll n=read(), m=read(), k=read(), i, j;
Matrix a(n,1), A(n,n);
rep(i,1,n)a[i][1]=read();
rep(i,1,n)rep(j,1,n)
if(i!=j and min(abs(i-j),n-abs(i-j))<k)A[i][j]=k-min(abs(i-j),n-abs(i-j));
A = pow(A,m);
// A.show();
auto f = A * a;
rep(i,1,n)
printf("%lld ",f[i][1]);
putchar(10);
}
return 0;
}