激活函数的选择,sigmoid/tanh/ReLU的比较

本文详细介绍了常用的激活函数,如ReLU、LeakyReLU、Maxout、tanh和sigmoid等,并讨论了它们的特点、优缺点以及适用场景。同时,文章还探讨了激活函数在深度学习中的作用,包括如何帮助网络学习非线性映射以及特征组合。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

原文: https://www.cnblogs.com/makefile/p/activation-function.html#undefined © 康行天下(只摘取部分内容)

激活函数选择

  1. 首先尝试ReLU,速度快,但要注意训练的状态.
  2. 如果ReLU效果欠佳,尝试Leaky ReLU或Maxout等变种。
  3. 尝试tanh正切函数(以零点为中心,零点处梯度为1)
  4. sigmoid/tanh在RNN(LSTM、注意力机制等)结构中有所应用,作为门控或者概率值.
  5. 在浅层神经网络中,如不超过4层的,可选择使用多种激励函数,没有太大的影响

激活函数的作用

  1. 加入非线性因素
  2. 充分组合特征

下面说明一下为什么有组合特征的作用.

一般函数都可以通过泰勒展开式来近似计算, 如sigmoid激活函数中的指数项可以通过如下的泰勒展开来近似计算:

                                                
其中有平方项,立方项及更更高项, 而 z=wx+bz=wx+b, 因此可以看作是输入特征 x 的组合. 以前需要由领域专家知识进行特征组合,现在激活函数能起到一种类似特征组合的作用. (思想来源: 微博@算法组)

ReLU(Rectified Linear Unit,修正线性单元)

为什么ReLU,Maxout等能够提供网络的非线性建模能力?它们看起来是分段线性函数,然而并不满足完整的线性要求:加法f(x+y)=f(x)+f(y)和乘法f(ax)=a×f(x)或者写作f(αx1+βx2)=αf(x1)+βf(x2)f(αx1+βx2)=αf(x1)+βf(x2)。非线性意味着得到的输出不可能由输入的线性组合重新得到(重现)。假如网络中不使用非线性激活函数,那么这个网络可以被一个单层感知器代替得到相同的输出,因为线性层加起来后还是线性的,可以被另一个线性函数替代。

ReLU的稀疏性(摘自这里):

当前,深度学习一个明确的目标是从数据变量中解离出关键因子。原始数据(以自然数据为主)中通常缠绕着高度密集的特征。然而,如果能够解开特征间缠绕的复杂关系,转换为稀疏特征,那么特征就有了鲁棒性(去掉了无关的噪声)。稀疏特征并不需要网络具有很强的处理线性不可分机制。那么在深度网络中,对非线性的依赖程度就可以缩一缩。一旦神经元与神经元之间改为线性激活,网络的非线性部分仅仅来自于神经元部分选择性激活。
对比大脑工作的95%稀疏性来看,现有的计算神经网络和生物神经网络还是有很大差距的。庆幸的是,ReLu只有负值才会被稀疏掉,即引入的稀疏性是可以训练调节的,是动态变化的。只要进行梯度训练,网络可以向误差减少的方向,自动调控稀疏比率,保证激活链上存在着合理数量的非零值。

ReLU 缺点

  • 坏死: ReLU 强制的稀疏处理会减少模型的有效容量(即特征屏蔽太多,导致模型无法学习到有效特征)。由于ReLU在x < 0时梯度为0,这样就导致负的梯度在这个ReLU被置零,而且这个神经元有可能再也不会被任何数据激活,称为神经元“坏死”。
  • 无负值: ReLU和sigmoid的一个相同点是结果是正值,没有负值.

sigmoid作激活函数的优缺点

历史上很流行(Historically popular since they have nice interpretation as a saturating “firing rate” of a neuron),梯度计算较为方便:

                             

优势是能够控制数值的幅度,在深层网络中可以保持数据幅度不会出现大的变化;而ReLU不会对数据的幅度做约束.

存在三个问题:

  1. 饱和的神经元会"杀死"梯度,指离中心点较远的x处的导数接近于0,停止反向传播的学习过程.
  2. sigmoid的输出不是以0为中心,而是0.5,这样在求权重w的梯度时,梯度总是正或负的.
  3. 指数计算耗时

为什么tanh相比sigmoid收敛更快:

  1. 梯度消失问题程度
    tanh′(x)=1−tanh(x)2∈(0,1)tanh′⁡(x)=1−tanh⁡(x)2∈(0,1)
    sigmoid: s′(x)=s(x)×(1−s(x))∈(0,1/4)sigmoid: s′(x)=s(x)×(1−s(x))∈(0,1/4)
    可以看出tanh(x)的梯度消失问题比sigmoid要轻.梯度如果过早消失,收敛速度较慢.
  2. 以零为中心的影响
    如果当前参数(w0,w1)的最佳优化方向是(+d0, -d1),则根据反向传播计算公式,我们希望 x0 和 x1 符号相反。但是如果上一级神经元采用 Sigmoid 函数作为激活函数,sigmoid不以0为中心,输出值恒为正,那么我们无法进行最快的参数更新,而是走 Z 字形逼近最优解。

梯度消失与梯度爆炸

梯度消失/爆炸原因及解决办法

原因,浅层的梯度计算需要后面各层的权重及激活函数导数的乘积,因此可能出现前层比后层的学习率小(vanishing gradient)或大(exploding)的问题,所以具有不稳定性.那么如何解决呢?

需要考虑几个方面:

  • 权重初始化
    使用合适的方式初始化权重, 如ReLU使用MSRA的初始化方式, tanh使用xavier初始化方式.
  • 激活函数选择
    激活函数要选择ReLU等梯度累乘稳定的.
  • 学习率
    一种训练优化方式是对输入做白化操作(包括正规化和去相关), 目的是可以选择更大的学习率. 现代深度学习网络中常使用Batch Normalization(包括正规化步骤,但不含去相关). (All you need is a good init. If you can't find the good init, use Batch Normalization.)

由于梯度的公式包含每层激励的导数以及权重的乘积,因此让中间层的乘积约等于1即可.但是sigmoid这种函数的导数值又与权重有关系(最大值1/4,两边对称下降),所以含有sigmoid的神经网络不容易解决,输出层的activation大部分饱和,因此不建议使用sigmoid.
ReLU在自变量大于0时导数为1,小于0时导数为0,因此可以解决上述问题.

梯度爆炸
由于sigmoid,ReLU等函数的梯度都在[0,1]以内,所以不会引发梯度爆炸问题。 而梯度爆炸需要采用梯度裁剪、BN、设置较小学习率等方式解决。

 

 

 

<think>好的,我现在需要帮助用户在MATLAB中绘制sigmoidtanhReLU和LeakyReLU激活函数的图像。首先,我得回忆一下这些激活函数的数学表达式,然后考虑如何在MATLAB中实现它们。 首先,用户提到了四个激活函数sigmoidtanhReLU和LeakyReLU。我需要逐一确认每个函数的定义。比如,sigmoid函数通常是$f(x) = \frac{1}{1 + e^{-x}}$,tanh是双曲正切函数,表达式为$f(x) = \frac{e^x - e^{-x}}{e^x + e^{-x}}$,或者也可以用双曲函数库里的函数。ReLU比较简单,就是$f(x) = \max(0, x)$,而LeakyReLU则是当x小于0时,乘以一个小的斜率,比如0.01,所以表达式是$f(x) = \begin{cases} x & \text{if } x \geq 0 \\ 0.01x & \text{otherwise} \end{cases}$。 接下来,考虑如何在MATLAB中实现这些函数。对于sigmoid,可能需要用元素级运算,比如用exp函数计算指数。同样,tanh在MATLAB中可能有内置函数,但为了准确起见,可能需要手动实现或者调用正确的函数。ReLU和LeakyReLU可以用条件判断,或者更高效的方式,比如逐元素比较。 然后,关于绘图部分。用户希望将这四个函数绘制出来。在MATLAB中,通常需要生成一个x值的向量,然后计算对应的y值,再使用plot函数绘制。可能需要设置不同的颜色和线条样式来区分各个激活函数。同时,添加网格、标签、标题和图例也是必要的步骤,以便图像更清晰。 需要注意的几点:首先,生成x的范围,比如从-5到5,步长0.1,这样可以覆盖函数的典型变化区域。其次,处理每个函数时,确保数组运算正确,避免维度错误。例如,sigmoid函数中的指数运算应该是对每个元素进行操作,而不是矩阵运算。可能需要使用点运算符(如.*和.^)来确保按元素计算。 对于LeakyReLU,可能需要使用逻辑索引来处理x中大于等于0和小于0的部分。例如,在MATLAB中,可以这样实现:y = x .* (x >= 0) + 0.01 * x .* (x < 0)。或者使用max函数结合不同的条件。 另外,用户提到在Python中使用detach()来切断计算图,但在MATLAB中不需要处理张量计算图的问题,因为MATLAB主要用于数值计算而不是深度学习框架中的自动微分。因此,这部分可以忽略,直接处理普通的数值数组即可。 接下来,需要整合这些步骤到一个MATLAB脚本中。可能需要分几个子图,或者在同一图中用不同颜色绘制,但考虑到四个函数放在同一图中可能比较拥挤,所以分四个子图更合适,每个子图显示一个函数。 然后,检查代码的正确性。例如,sigmoid函数是否计算正确,tanh是否有内置函数或者是否需要手动实现。在MATLAB中,tanh函数是内置的,可以直接使用。ReLU可以用max函数,LeakyReLU可能需要逻辑索引。 最后,确保图像的展示效果良好,包括坐标轴标签、标题、图例、网格线等。可能需要使用hold on来在同一图中绘制多个函数,但如果是分四个子图的话,每个子图独立显示一个函数更清晰。 现在,我需要将上述思考转化为具体的MATLAB代码步骤,并确保每个激活函数的正确性,以及绘图的正确设置。同时,需要按照用户的要求,使用中文回答,并生成相关问题。最后,根据用户提供的引用,检查是否有需要引用的地方,比如激活函数的定义或绘图方法是否来自参考内容。但用户提供的引用主要是关于Python的实现,而这里的问题是关于MATLAB的,因此可能引用部分不适用,但需要确认是否有相关内容需要标注。</think>### 分步实现方法 1. **定义输入范围** 生成从$-5$到$5$的连续输入值,步长$0.1$,用于绘制平滑曲线: ```matlab x = -5:0.1:5; ``` 2. **定义激活函数** - **Sigmoid**: $$f(x) = \frac{1}{1 + e^{-x}}$$ ```matlab sigmoid = 1 ./ (1 + exp(-x)); ``` - **Tanh**: $$f(x) = \tanh(x)$$(直接使用MATLAB内置函数) ```matlab tanh_y = tanh(x); ``` - **ReLU**: $$f(x) = \max(0, x)$$ ```matlab relu = max(0, x); ``` - **LeakyReLU**: $$f(x) = \begin{cases} x & x \geq 0 \\ 0.01x & x < 0 \end{cases}$$ ```matlab leakyrelu = x .* (x >= 0) + 0.01 * x .* (x < 0); ``` 3. **绘制图像** 使用`subplot`将四个函数绘制在同一窗口的不同子图中: ```matlab figure; % Sigmoid subplot(2,2,1); plot(x, sigmoid, 'b', 'LineWidth', 2); title('Sigmoid'); grid on; % Tanh subplot(2,2,2); plot(x, tanh_y, 'r', 'LineWidth', 2); title('Tanh'); grid on; % ReLU subplot(2,2,3); plot(x, relu, 'g', 'LineWidth', 2); title('ReLU'); grid on; % LeakyReLU subplot(2,2,4); plot(x, leakyrelu, 'm', 'LineWidth', 2); title('LeakyReLU'); grid on; ``` ### 完整代码 ```matlab x = -5:0.1:5; % Sigmoid sigmoid = 1 ./ (1 + exp(-x)); % Tanh tanh_y = tanh(x); % ReLU relu = max(0, x); % LeakyReLU leakyrelu = x .* (x >= 0) + 0.01 * x .* (x < 0); % 绘图 figure; subplot(2,2,1); plot(x, sigmoid, 'b', 'LineWidth', 2); title('Sigmoid'); grid on; subplot(2,2,2); plot(x, tanh_y, 'r', 'LineWidth', 2); title('Tanh'); grid on; subplot(2,2,3); plot(x, relu, 'g', 'LineWidth', 2); title('ReLU'); grid on; subplot(2,2,4); plot(x, leakyrelu, 'm', 'LineWidth', 2); title('LeakyReLU'); grid on; ``` ### 效果说明 - **Sigmoid** 输出范围$(0,1)$,适用于概率映射[^1]。 - **Tanh** 输出范围$(-1,1)$,中心对称性有助于收敛[^2]。 - **ReLU** 在$x>0$时线性增长,避免梯度消失。 - **LeakyReLU** 改进ReLU的“神经元死亡”问题,允许负值区域有微小梯度。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值