#-*-coding:utf-8 -*- #数据的读取 from tensorflow.examples.tutorials.mnist import input_data import tensorflow as tf mnist = input_data.read_data_sets("MNIST_data/",one_hot = True) sess = tf.InteractiveSession() #参数的设置 in_units = 784 h1_units = 300 w1 = tf.Variable(tf.truncated_normal([in_units,h1_units],stddev = 0.1)) b1 = tf.Variable(tf.zeros([h1_units])) w2 = tf.Variable(tf.zeros([h1_units,10])) b2 = tf.Variable(tf.zeros([10])) x = tf.placeholder(tf.float32,[None,in_units]) keep_prob = tf.placeholder(tf.float32) hidden1 = tf.nn.relu(tf.matmul(x,w1)+b1) hidden1_drop = tf.nn.dropout(hidden1,keep_prob) y = tf.nn.softmax(tf.matmul(hidden1_drop,w2)+b2) y_ = tf.placeholder(tf.float32,[None,10]) cross_entropy = tf.reduce_mean(-tf.reduce_sum(y_*tf.log(y),reduction_indices = [1])) train_step = tf.train.AdagradOptimizer(0.3).minimize(cross_entropy) tf.global_variables_initializer().run() for i in range(3000): batch_xs,batch_ys = mnist.train.next_batch(100) train_step.run({x:batch_xs,y_:batch_ys,keep_prob:0.75}) correct_prediction = tf.equal(tf.argmax(y,1),tf.argmax(y_,1)) accuracy = tf.reduce_mean(tf.cast(correct_prediction,tf.float32)) print(accuracy.eval({x:mnist.test.images,y_:mnist.test.labels,keep_prob:1.0}))
基于TensorFlow的多层感知机
最新推荐文章于 2024-09-29 17:00:04 发布