自顶向下 逐步求精

过程:

自顶向下:将复杂问题逐层分解为若干个更简单子问题

复杂问题——>较简单的子问题——>更简单的子问题——>。。。。(继续拆分)

逐步求精:将现实中的问题逐步求精变化为能够以一定算法或者组合解决的问题。

现实问题——>。。。。——>能以算法或组合解决的问题

详细说来,“自顶向下,逐步求精”就是从问题的整体(最顶层)出发,将问题分解成独立互不交叉的若干子问题,每个子问题解决问题的一部分或一种情况。然后再将各个子问题分别分解为更简单的子问题,一直分解,直到各个问题都好解决,这和我们程序设计课上学到的差不多。

这里写图片描述

优点:

自顶向下,逐步求精“能够将复杂问题逐步简单化,使得一个复杂问题的解决方案更加清晰。

例子:洗衣机运行过程

0)选择洗衣模式: 对应水位,注水时间
1)注水,水位计计水位
2)浸泡,计时器计时
3)电机转动,左3次,右3次
4)排水,水位计计水位
5)电机转动,脱水
6)结束

细|化:

设置模式
打开上水开关,检测水位,当水位到达设定的时候关闭上水开关
计时器计时到设定时间
电机按设定转动
打开排水开关
电机转动脱水,计时到时后停止
blog.
关机

伪代码:

照片:

这里写图片描述
这里写图片描述

实体:

water_in_switch(open_close) // open 打开上水开关, close关闭
water_out_switch(open_close) // open 打开排水开关, close关闭
get_water_volume() //返回洗衣机内部水的高度

motor_run(direction) // 电机转动。 left左转, right右转, stop停
time_counter() // 返回当前时间计数,以秒为单位
halt(returncode) //停机, success 成功 failure 失败
input mode,waterlevel
water_in_switch(open)
if(get_water_volume()>=waterlevel)
water_in_switch(close);
start_time=time_counter();
if (time_counter()-start_time>=time_setting[mode])
repeat
start_time2=time_counter();
motor_run(left);
motor_run(stop);
motor_run(left);
motor_run(stop);
motor_run(left);
motor_run(stop);
motor_run(right);
motor_run(stop);
motor_run(right);
motor_run(stop);
motor_run(right);
motor_run(stop);
until (time_counter()-start_time2>=time2_setting[mode])
water_out_switch(open);
motor_run(right);
start_time3=time_counter();
if (time_counter()-start_time3>=time3_setting[mode])
motor_run(stop);
water_out_switch(close);
halt(success);

### 回答问题 自顶向下逐步求精的模块化程序设计是一种结构化编程方法,广泛应用于C++程序开发中。这种方法的核心思想是从整体到局部、从抽象到具体地解决问题。以下是详细的解释和实现步骤: --- #### 1. **自顶向下的设计思想** - 自顶向下是指从高层次的抽象开始,逐步细化到具体的实现细节。 - 在程序设计中,首先定义程序的整体目标和功能,然后将其分解为多个子任务或模块,每个模块负责完成一部分功能。 #### 2. **逐步求精的过程** - 逐步求精是将复杂问题分解为更小、更简单的子问题的过程。 - 每一步都专注于解决当前层次的问题,同时忽略下层细节,直到达到可以直接实现的具体步骤。 #### 3. **模块化的意义** - 模块化是指将程序划分为多个独立的模块,每个模块完成特定的功能。 - 这种方法有助于提高代码的可读性、可维护性和复用性。 --- ### 示例代码 以下是一个使用自顶向下逐步求精方法设计的简单C++程序示例,该程序计算并输出一个整数数组的最大值。 ```cpp #include <iostream> #include <vector> using namespace std; // 函数声明 int findMax(const vector<int>& nums); void printResult(int maxVal); // 主函数 int main() { // 定义输入数组 vector<int> numbers = {3, 5, 7, 2, 8, -1, 4, 10, 12}; // 调用函数找到最大值 int maxValue = findMax(numbers); // 输出结果 printResult(maxValue); return 0; } // 找到数组中的最大值 int findMax(const vector<int>& nums) { if (nums.empty()) return INT32_MIN; // 如果数组为空,返回最小整数值 int maxVal = nums[0]; for (int num : nums) { if (num > maxVal) { maxVal = num; } } return maxVal; } // 输出最大值 void printResult(int maxVal) { cout << "The maximum value is: " << maxVal << endl; } ``` --- ### 解释 1. **自顶向下的设计过程**: - 首先定义程序的整体目标:计算并输出一个整数数组的最大值。 - 将问题分解为两个子任务: 1. 找到数组中的最大值(由 `findMax` 函数完成)。 2. 输出最大值(由 `printResult` 函数完成)。 2. **逐步求精的过程**: - 在主函数中,我们定义了一个数组,并调用 `findMax` 函数来找到最大值。 - `findMax` 函数通过遍历数组,逐步比较每个元素,找到最大值。 - 最后,`printResult` 函数负责格式化输出结果。 3. **模块化的优点**: - 程序被划分为三个独立的部分:主函数、`findMax` 和 `printResult`。 - 每个部分的功能明确且独立,便于测试和维护。 --- ### 相关问题
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值