hdu 2767 Proving Equivalences (tajan)强联通

本文探讨了如何通过添加最少数量的边使图变为强连通图的问题,介绍了一种有效的算法,首先计算图的强连通分量,然后通过构建新图并统计节点的出入度来确定所需添加的边数。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=2767

Consider the following exercise, found in a generic linear algebra textbook.

Let A be an n × n matrix. Prove that the following statements are equivalent:

1. A is invertible.
2. Ax = b has exactly one solution for every n × 1 matrix b.
3. Ax = b is consistent for every n × 1 matrix b.
4. Ax = 0 has only the trivial solution x = 0.

The typical way to solve such an exercise is to show a series of implications. For instance, one can proceed by showing that (a) implies (b), that (b) implies (c), that (c) implies (d), and finally that (d) implies (a). These four implications show that the four statements are equivalent.

Another way would be to show that (a) is equivalent to (b) (by proving that (a) implies (b) and that (b) implies (a)), that (b) is equivalent to (c), and that (c) is equivalent to (d). However, this way requires proving six implications, which is clearly a lot more work than just proving four implications!

I have been given some similar tasks, and have already started proving some implications. Now I wonder, how many more implications do I have to prove? Can you help me determine this?

 

 

Input

On the first line one positive number: the number of testcases, at most 100. After that per testcase:

* One line containing two integers n (1 ≤ n ≤ 20000) and m (0 ≤ m ≤ 50000): the number of statements and the number of implications that have already been proved.
* m lines with two integers s1 and s2 (1 ≤ s1, s2 ≤ n and s1 ≠ s2) each, indicating that it has been proved that statement s1 implies statement s2.

 

 

Output

Per testcase:

* One line with the minimum number of additional implications that need to be proved in order to prove that all statements are equivalent.

 

 

Sample Input

 

2 4 0 3 2 1 2 1 3

 

 

Sample Output

 

4 2

 

给一张图,问需要添加几条边,使得图变成强联通图

先求这张图的强连通分量,如果为1,则输出0(证明该图不需要加边已经是强连通的了),否则缩点。遍历原图的所有边,如果2个点在不同的强连通分量里面,建边,构成一张新图。统计新图中点的入度和出度,取入度等于0和出度等于0的最大值(因为求强连通缩点后,整张图就变成了一个无回路的有向图,要使之强连通,只需要将入度=0和出度=0的点加边即可,要保证加边后没有入度和出度为0的点,所以取两者最大值)

#pragma GCC optimize(2)
#include<stdio.h>
#include<algorithm>
#include<string.h>
#include<set>
#include<vector>
#include<queue>
using namespace std;
const int maxn = 1e5 + 100;
const int inf = 0x3f3f3f3f;
typedef long long ll;
struct node
{
	int u, v, next;
}edge[maxn];
int dfn[maxn], low[maxn], Stack[maxn], instack[maxn], belong[maxn];
int head[maxn], in[maxn], ou[maxn];
int tot, n, m, index, cnt, stop;
void init()
{
	memset(head, -1, sizeof(head));
	memset(dfn, 0, sizeof(dfn));
	memset(low, 0, sizeof(low));
	memset(in, 0, sizeof(in));
	memset(ou, 0, sizeof(ou));
	memset(Stack, 0, sizeof(Stack));
	memset(instack, 0, sizeof(instack));
	memset(belong, 0, sizeof(belong));
	index = tot = 0;
	stop = cnt = 0;
	return;
}
void addedge(int u, int v)
{
	edge[tot].u = u;
	edge[tot].v = v;
	edge[tot].next = head[u];
	head[u] = tot++;
	return;
}
void tarjan(int u)
{
	dfn[u] = low[u] = ++index;
	instack[u] = 1;
	Stack[stop++] = u;
	for (int i = head[u]; i != -1; i = edge[i].next)
	{
		int v = edge[i].v;
		if (!dfn[v])
		{
			tarjan(v);
			low[u] = min(low[u], low[v]);
		}
		else if (instack[v])
		{
			low[u] = min(low[u], dfn[v]);
		}
	}
	if (low[u] == dfn[u])
	{
		cnt++; 
		int v;
		do 
		{
			v = Stack[--stop];
			instack[v] = 0;
			belong[v] = cnt;
		} while (u != v);
	}
}
int main()
{
	//freopen("C://input.txt", "r", stdin);
	int t;
	scanf("%d", &t);
	while (t--)
	{
		scanf("%d%d", &n, &m); 
		init();
		int incnt, oucnt;
		incnt = oucnt = 0;
		for (int i = 1; i <= m; i++)
		{
			int u, v;
			scanf("%d%d", &u, &v);
			addedge(u, v);
		}
		for (int i = 1; i <= n; i++)
		{
			if (!dfn[i])
			{
				tarjan(i);
			}
		}
		if (cnt == 1)
		{
			printf("0\n");
			continue;
		}
		for (int i = 1; i <= n; i++)
		{
			for (int j = head[i]; j != -1; j = edge[j].next)
			{
				int v = edge[j].v;
				if (belong[v] != belong[i])
				{
					in[belong[v]]++;
					ou[belong[i]]++;
				}
			}
		}
		for (int i = 1; i <= cnt; i++)
		{
			if (!in[i])
			{
				incnt++;
			}
			if (!ou[i])
			{
				oucnt++;
			}
		}
		printf("%d\n", max(incnt, oucnt));
	}
	return 0;
}

 

内容概要:本文详细探讨了基于MATLAB/SIMULINK的多载波无线通信系统仿真及性能分析,重点研究了以OFDM为代表的多载波技术。文章首先介绍了OFDM的基本原理和系统组成,随后通过仿真平台分析了不同调制方式的抗干扰性能、信道估计算法对系统性能的影响以及同步技术的实现与分析。文中提供了详细的MATLAB代码实现,涵盖OFDM系统的基本仿真、信道估计算法比较、同步算法实现和不同调制方式的性能比较。此外,还讨论了信道特征、OFDM关键技术、信道估计、同步技术和系统级仿真架构,并提出了未来的改进方向,如深度学习增强、混合波形设计和硬件加速方案。; 适合人群:具备无线通信基础知识,尤其是对OFDM技术有一定了解的研究人员和技术人员;从事无线通信系统设计与开发的工程师;高校通信工程专业的高年级本科生和研究生。; 使用场景及目标:①理解OFDM系统的工作原理及其在多径信道环境下的性能表现;②掌握MATLAB/SIMULINK在无线通信系统仿真中的应用;③评估不同调制方式、信道估计算法和同步算法的优劣;④为实际OFDM系统的设计和优化提供理论依据和技术支持。; 其他说明:本文不仅提供了详细的理论分析,还附带了大量的MATLAB代码示例,便于读者动手实践。建议读者在学习过程中结合代码进行调试和实验,以加深对OFDM技术的理解。此外,文中还涉及了一些最新的研究方向和技术趋势,如AI增强和毫米波通信,为读者提供了更广阔的视野。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值