1007. Maximum Subsequence Sum (25)
Given a sequence of K integers { N1, N2, ..., NK }. A continuous subsequence is defined to be { Ni, Ni+1, ..., Nj } where 1 <= i <= j <= K. The Maximum Subsequence is the continuous subsequence which has the largest sum of its elements. For example, given sequence { -2, 11, -4, 13, -5, -2 }, its maximum subsequence is { 11, -4, 13 } with the largest sum being 20.
Now you are supposed to find the largest sum, together with the first and the last numbers of the maximum subsequence.
Input Specification:
Each input file contains one test case. Each case occupies two lines. The first line contains a positive integer K (<= 10000). The second line contains K numbers, separated by a space.
Output Specification:
For each test case, output in one line the largest sum, together with the first and the last numbers of the maximum subsequence. The numbers must be separated by one space, but there must be no extra space at the end of a line. In case that the maximum subsequence is not unique, output the one with the smallest indices i and j (as shown by the sample case). If all the K numbers are negative, then its maximum sum is defined to be 0, and you are supposed to output the first and the last numbers of the whole sequence.
Sample Input:10 -10 1 2 3 4 -5 -23 3 7 -21Sample Output:
10 1 4
在线处理,用一个ts保存临时的最大子列和区间的左端点,s为确定的最终左端点,e为右端点
#include <cstdio>
#include <cstring>
#include <iostream>
using namespace std;
const int maxn = 10000, INF = 0x7fffffff;
int a[maxn + 10];
int main()
{
int K;
cin >> K;
bool check = false;
for (int i = 0; i < K; i++) {
scanf("%d", &a[i]);
if (a[i] >= 0) check = true;
}
if (!check) {
printf("0 %d %d\n", a[0], a[K - 1]);
return 0;
}
int s = a[0], e = a[0], ts = a[0];
int tsum = 0, maxx = -INF;
bool flag = false;
for (int i = 0; i < K; i++) {
//flag == true时说明上一次迭代的时候tsum < 0了,要重新计算最大子列和s
if (flag) {
ts = a[i]; //计算新的子列和,取新的左端点
flag = false; //注意解除标记
}
tsum += a[i];
if (maxx < tsum) {
s = ts; //更新最终的左端点s
e = a[i]; //更新右端点e
maxx = tsum;
}
if (tsum < 0) { //debug 不要放到if(maxx < tsum)上面
flag = true;
tsum = 0;
}
}
printf("%d %d %d\n", maxx, s, e);
return 0;
}
本文探讨了最大子序列和问题的解决方案,通过一个具体的示例介绍了如何寻找具有最大和的连续子序列及其对应的首个与末尾元素。该算法特别适用于处理包含大量整数的数据集。
5398

被折叠的 条评论
为什么被折叠?



