题目:
Given a binary tree, determine if it is height-balanced.
For this problem, a height-balanced binary tree is defined as a binary tree in which the depth of the two subtrees of every node never differ by more than 1.
题意:
给定一棵二叉树,判定它是否为平衡二叉树。
算法分析:
* 平衡二叉树(Balanced Binary Tree)又被称为AVL树(有别于AVL算法),
* 且具有以下性质:它是一棵空树或它的左右两个子树的高度差的绝对值不超过1,
* 并且左右两个子树都是一棵平衡二叉树。
* 下面的代码就完全按照定义,首先得到节点左右子树的高度(递归),然后判断左右子树是否为平衡二叉树,
* 利用递归完成整棵树的判断。完全满足条件,就返回true.
AC代码:
public class Solution
{
//递归
public boolean isBalanced(TreeNode root)
{
if(root==null) return true;
int leftdepth;
int rightdepth;
leftdepth=maxDepth(root.left);
rightdepth=maxDepth(root.right);
if(Math.abs(leftdepth-rightdepth)<=1&&isBalanced(root.left)&&isBalanced(root.right)) return true;
else return false;
}
//又是递归 采用代码《Maximum Depth of Binary Tree 》--https://leetcode.com/problems/maximum-depth-of-binary-tree/
public int maxDepth(TreeNode root)
{
if(root == null)
{
return 0;
}
int l = maxDepth(root.left);
int r = maxDepth(root.right);
return l > r? l + 1:r+ 1;
}
}