题目:
A robot is located at the top-left corner of a m x n grid (marked 'Start' in the diagram below).
The robot can only move either down or right at any point in time. The robot is trying to reach the bottom-right corner of the grid (marked 'Finish' in the diagram below).
How many possible unique paths are there?
Above is a 3 x 7 grid. How many possible unique paths are there?
题意:
给定一个m x n的网格结构,一个机器人从网格的左上角移动到右下角,每次只能向右或者向下移动一格,问一共有多少种移动方式。
算法分析:
* 动态规划:
*
* 具体而言,定义m*n维二维数组dp[][],dp[i][j]表示从s出发到达格子(i,j)的路径数目,
*
* 具体而言,定义m*n维二维数组dp[][],dp[i][j]表示从s出发到达格子(i,j)的路径数目,
* 现在我们可以思考如果写dp方程。通过观察网格特征和走法,我们可以分析得知,到达(i,j)只有两种走法,
* 第一是从(i-1,j)向下到(i,j),第二是从(i,j-1)向右到(i,j),而dp[i][j-1]和dp[i-1][j]是已经保存的中间计算结果,
* 所以可以得到dp递推方程为dp[i][j] = dp[i][j-1] + dp[i-1][j]。所以可以从(0,0)开始不断计算到右侧和下方的格子的路径总数,
* 直到算出dp[m-1][n-1],算法时间复杂度为O(mn),空间复杂度也为O(mn)。
*
*
算法如下:
public class Solution
{
public int uniquePaths(int m, int n)
{
//dp[i][j] = dp[i-1][j] + dp[i][j-1];
int [][] dp = new int[m][n];
for(int i = 0; i < m; i++)
dp[i][0] = 1;
for(int j = 0; j < n; j++)
dp[0][j] = 1;
for(int i = 1; i < m; i++)
{
for(int j = 1; j< n; j++)
dp[i][j] = dp[i-1][j] + dp[i][j-1];
}
return dp[m-1][n-1];
}
}