地址:https://leetcode.com/problems/reach-a-number
题目:
You are standing at position 0 on an infinite number line. There is a goal at position target.
On each move, you can either go left or right. During the n-th move (starting from 1), you take n steps.
Return the minimum number of steps required to reach the destination.
Example 1:
Input: target = 3
Output: 2
Explanation:
On the first move we step from 0 to 1.
On the second step we step from 1 to 3.
Example 2:
Input: target = 2
Output: 3
Explanation:
On the first move we step from 0 to 1.
On the second move we step from 1 to -1.
On the third move we step from -1 to 2.
Note:
target
will be a non-zero integer in the range[-10^9, 10^9]
.
理解:
首先,若能达到target
,则一定能通过相同的步骤达到-target
。因为若
t
a
r
g
e
t
=
∑
i
=
1
k
a
i
i
target=\sum\limits_{i=1}^{k}{{{{a}_{i}}}i}
target=i=1∑kaii
则
−
t
a
r
g
e
t
=
∑
i
=
1
k
−
a
i
i
-target=\sum\limits_{i=1}^{k}{{{-{a}_{i}}}i}
−target=i=1∑k−aii
因此只需考虑正的target
即可。
- 首先,寻找第一个大于
target
的sum
,使得 s u m = 1 + 2 + ⋯ + k > = t a r g e t sum=1+2+\cdots+k>=target sum=1+2+⋯+k>=target - 若
target==sum
,则返回k
- 若
diff=sum-target
是偶数,则可以通过把 sum − target 2 \frac{\text{sum}-\text{target}}{2} 2sum−target的符号取反,从而得到target。
解释:
sum = 1 + ⋯ + sum − target 2 + ⋯ + k \text{sum}=1+\cdots+\frac{\text{sum}-\text{target}}{2}+\cdots+k sum=1+⋯+2sum−target+⋯+k
target = 1 + ⋯ − sum − target 2 + ⋯ + k \text{target}=1+\cdots-\frac{\text{sum}-\text{target}}{2}+\cdots+k target=1+⋯−2sum−target+⋯+k
观察上面的两个式子,因为 sum − target \text{sum}-\text{target} sum−target是偶数,且 sum − target < k \text{sum}-\text{target}<k sum−target<k,因此总可以在 { 1 ⋯ k } \left\{ 1\cdots k\right\} {1⋯k}中找到一个数 i = sum − target 2 i=\frac{\text{sum}-\text{target}}{2} i=2sum−target,将其符号取反,就得到了 target \text{target} target。
也就是说,当 sum − target \text{sum}-\text{target} sum−target为偶数的时候,通过反转 sum − target 2 \frac{\text{sum}-\text{target}}{2} 2sum−target的符号,可以把sum
减小到target
。 - 当
sum
−
target
\text{sum}-\text{target}
sum−target为奇数的时候
- 如果n是偶数,n+1是奇数,则加上n+1,sum-target就变成了偶数,然后进行翻转即可
- 若n是偶数,n+1是偶数,则加上n+1和n+2,sum-target就变成了偶数,然后进行翻转即可
实现:
class Solution {
public:
int reachNumber(int target) {
target = abs(target);
//8.0 is necessary, otherwise 8*target is overflow
long long k = ceil((-1 + sqrt(1 + 8.0 * target)) / 2.0);
long long sum = (1 + k)*k / 2;
if (sum == target) return k;
long long diff = sum - target;
if ((diff & 1) == 0)
return k;
else
//k is odd, k+1 is even, k+2 is needed
return (k & 1) ? k + 2 : k + 1;
}
};
总感觉理解的地方写得不够严谨,特别是总能找到的证明是不是有问题啊。。先不管了