A Large set of Machine Learning Resources for Beginners to Mavens

本文提供了一系列机器学习资源,涵盖了从基础知识到高级技术的多个方面,包括线性回归、线性代数、多元线性回归、Octave教程、逻辑回归、正则化、神经网络、机器学习系统设计、支持向量机、聚类、降维、异常检测、推荐系统、大规模机器学习等。资源涵盖了从入门到进阶的学习路径。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

转自:我爱机器学习(52ml.net) » 《A Large set of Machine Learning Resources for Beginners to Mavens》

Machine Learning 101:

I. Introduction to Machine Learning

http://homepages.inf.ed.ac.uk/rbf/IAPR/researchers/MLPAGES/mltut.htm

http://jeremykun.com/2012/08/04/machine-learning-introduction/

http://www.omidrouhani.com/research/machinelearning/html/machinelearning.htm

http://www.youtube.com/playlist?list=PLD63A284B7615313A

(cal tech class)

II.  Linear Regression

http://en.wikipedia.org/wiki/Linear_regression

http://www.youtube.com/watch?v=ExVhaN36jBs

http://en.wikipedia.org/wiki/Simple_linear_regression

http://www.youtube.com/watch?v=ocGEhiLwDVc

III) Linear Algebra

http://ocw.mit.edu/courses/mathematics/18-06sc-linear-algebra-fall-2011/Syllabus/

https://www.khanacademy.org/math/linear-algebra

online text

http://joshua.smcvt.edu/linearalgebra/book.pdf

- see

http://joshua.smcvt.edu/linearalgebra/

for usage rights

V) Linear Regression with Multiple Variables
- Gradient Descent

http://en.wikipedia.org/wiki/Gradient_descent

http://www.youtube.com/watch?v=umAeJ7LMCfU

(discusses above wiki article)

http://www.youtube.com/watch?v=Dgn1ssi2p40

- Optimization

http://www.stanford.edu/class/ee364a/videos/video01.html

IV) Octave Tutorial

http://en.wikibooks.org/wiki/Octave_Programming_Tutorial

VI) Logistic Regression (LR)

http://en.wikipedia.org/wiki/Logistic_regression

http://alias-i.com/lingpipe/demos/tutorial/logistic-regression/read-me.html

http://www.ats.ucla.edu/stat/sas/library/logistic.pdf

http://www.youtube.com/watch?v=-Z2a_mzl9LM&feature=c4-overview&playnext=1&list=TLIxwITi7ngG0

(refers to LR as a classifier)

VII) Regularization

http://en.wikipedia.org/wiki/Regularization_(mathematics)

http://solon.cma.univie.ac.at/regul.html

http://www.di.ens.fr/~fbach/ecml2010tutorial/ecml_tutorial_part1.pdf

overview using advanced math

http://solon.cma.univie.ac.at/ms/regtutorial.pdf

VIII and IX) Neural Networks

http://www.youtube.com/watch?v=KuPai0ogiHk

http://www.youtube.com/watch?v=Ih5Mr93E-2c&list=PLD63A284B7615313A&index=10

- backpropagation

http://www.youtube.com/watch?v=aVId8KMsdUU

http://www.speech.sri.com/people/anand/771/html/node37.html

http://blog.zabarauskas.com/backpropagation-tutorial/

XI) Machine Learning System Design

http://people.cs.pitt.edu/~milos/courses/cs2750-Spring03/lectures/class2.pdf

Precision, recall, accuracy, …

http://en.wikipedia.org/wiki/Precision_and_recall

https://en.wikipedia.org/wiki/Accuracy_and_precision

http://stats.stackexchange.com/questions/34193/how-to-choose-an-error-metric-when-evaluating-a-class…

http://www.cs.cornell.edu/courses/cs578/2003fa/performance_measures.pdf

XII) Support Vector Machines

http://www.cs.ucf.edu/courses/cap6412/fall2009/papers/Berwick2003.pdf

http://www.cs.columbia.edu/~kathy/cs4701/documents/jason_svm_tutorial.pdf

http://www.youtube.com/watch?v=eHsErlPJWUU

http://web.mit.edu/zoya/www/SVM.pdf

XIII) Clustering

http://en.wikipedia.org/wiki/Cluster_analysis

http://en.wikipedia.org/wiki/K-means_clustering

http://www.youtube.com/watch?v=0MQEt10e4NM&feature=c4-overview&playnext=1&list=TLT3EED0Azl4Y

XIV) Dimensionality Reduction

http://en.wikipedia.org/wiki/Dimensionality_reduction

http://research.cs.tamu.edu/prism/lectures/iss/iss_l10.pdf

http://www.math.uwaterloo.ca/~aghodsib/courses/f06stat890/readings/tutorial_stat890.pdf

http://www.youtube.com/watch?v=EHIZ7Pk1XVY

http://www.youtube.com/watch?v=mz618Tesra4

XV) Anomaly Detection

www.siam.org/meetings/sdm08/TS2.ppt

http://en.wikipedia.org/wiki/Anomaly_detection

- Google Analytics

http://www.google.com/analytics/

- anomaly detection with Google Analytics (example)

http://www.youtube.com/watch?v=PulNjqfToAo

Must purchase this article (I did not purchase but appears to be good)

http://www.sciencedirect.com/science/article/pii/S138912860700062X

- Gaussian distribution

http://www.youtube.com/watch?v=4uiJoYVPmMw

(no math)

https://en.wikipedia.org/wiki/Normal_distribution

http://www.r-tutor.com/elementary-statistics/probability-distributions/normal-distribution

https://en.wikipedia.org/wiki/Multivariate_normal_distribution

XVI) Recommender Systems

http://pages.cs.wisc.edu/~beechung/icml11-tutorial/

http://ijcai-11.iiia.csic.es/files/proceedings/Tutorial%20IJCAI%202011%20Gesamt.pdf

http://muricoca.github.io/crab/tutorial.html

(using Python)

- Collaborative Filtering

www.cs.cmu.edu/~wcohen/collab-

filtering-tutorial.ppt

XVII) Large Scale Machine Learning

http://i.stanford.edu/~ullman/pub/ch12.pdf

http://www.sanjivk.com/EECS6898/

(introduction to class)
(lectures)

http://www.sanjivk.com/EECS6898/lectures.html

http://techtalks.tv/talks/introduction-5/57923/

- stochastic gradient descent

http://en.wikipedia.org/wiki/Stochastic_gradient_descent

http://www.youtube.com/watch?v=HvLJUsEc6dw

(visualization)

http://work.caltech.edu/library/101.html

http://ocw.mit.edu/courses/electrical-engineering-and-computer-science/6-832-underactuated-robotics-…

http://ocw.mit.edu/courses/electrical-engineering-and-computer-science/6-832-underactuated-robotics-…

- parallelized stochastic gradient descent

http://www.research.rutgers.edu/~lihong/pub/Zinkevich11Parallelized.pdf

- recursive partitioning:

http://cran.r-project.org/web/packages/rpart/vignettes/longintro.pdf

Machine Learning 201:

Advanced Machine Learning Course (CMU)

Lecture 1: Machine Learning With Scikit-Learn

Lecture 2: Machine Learning With Scikit-Learn

Lecture 3: Machine Learning from the Boston Python User Group

Andrew Ng’s Standford ML Class

An Introduction to Machine Learning

Andrew Ng’s Coursera Class Wiki

Koller's PGM course on Coursera (requires solid prob. background)

The Machine Learning Library

JMLR

CMU Google Slides 

NN Course

Deep Learning:

Deep Learning - Very wide grasp resource about everything

Juergen Schmidhuber's home page

- Different perspectives of NNs with theoretical view as well

Home Page of Geoffrey Hinton

- And the Father of DL

Neural Network FAQ, part 1 of 7: Introduction

- General sense NN FAQ

Page on lear.inrialpes.fr

- INRIA Deep Learning Notes tutorial

Page on nyu.edu:21991

- very detailed examples on real datasets

Hinton's NN lectures at Coursera

Some good articles on working with the command line:

command line nuggets for data science (article focuses on unix but all will work in linux bash)

intro to the command line

7 Command Line Tools for Data Scientists

Jacobian Iteration for Singular Value Decomposition:

Basic Explanation 

Stream Algorithm for SVD

Fortran:

Fortran for Beginners 

Fortran 77 Stanford Tutorial

Professional Programmer’s Guide to Fortran 77

BLAS

Fortran 77 Intrinsic Functions

Mathematics, Statistical Theory and Probability Theory:

Introduction to Probability

Rice

Chang Stochastic Processes

Durrett Probability

Methods of Optimization:

Gradient Descent

Basic Steepest Decent 

Newton’s Method in Optimization

CRAN Optimization and Mathematical Programming Task View

MIT OCW Optimization Methods

Boyd Optimization

Boyd Solutions Manual

Convex Optimization in R

Theoretical Computer Science:

Foundations of Computer Science 

Complexity Theory a Modern Approach

Some Really Random Stuff:

A Little Stats Cheat Sheet.

Pretty basic stuff but it is a nice quick reference.

Proof wiki

list of symbols with LaTex code!!

LaTex greeks

, very useful.

LaTeX fonts

R:

R One pagers

R Time Series

R Statistical And Machine Learning Task View

Python:

Pylearn2 Deeplearning Library

IPython Notebooks on Various Topics

Credits goes to

Resources

I added some of my places to that list as well.

 

原文:http://www.erogol.com/large-set-machine-learning-resources-beginners-mavens/

Linear algebra is a pillar of machine learning. You cannot develop a deep understanding and application of machine learning without it. In this new laser-focused Ebook written in the friendly Machine Learning Mastery style that you’re used to, you will finally cut through the equations, Greek letters, and confusion, and discover the topics in linear algebra that you need to know. Using clear explanations, standard Python libraries, and step-by-step tutorial lessons, you will discover what linear algebra is, the importance of linear algebra to machine learning, vector, and matrix operations, matrix factorization, principal component analysis, and much more. This book was designed to be a crash course in linear algebra for machine learning practitioners. Ideally, those with a background as a developer. This book was designed around major data structures, operations, and techniques in linear algebra that are directly relevant to machine learning algorithms. There are a lot of things you could learn about linear algebra, from theory to abstract concepts to APIs. My goal is to take you straight to developing an intuition for the elements you must understand with laser-focused tutorials. I designed the tutorials to focus on how to get things done with linear algebra. They give you the tools to both rapidly understand and apply each technique or operation. Each tutorial is designed to take you about one hour to read through and complete, excluding the extensions and further reading. You can choose to work through the lessons one per day, one per week, or at your own pace. I think momentum is critically important, and this book is intended to be read and used, not to sit idle. I would recommend picking a schedule and sticking to it.
下载machine learning for beginners是一个很好的选择,特别是对于初学者来说。机器学习已经成为了当今科技领域的一项重要技术,在各个领域都有应用。通过学习机器学习,我们可以了解它的基本概念、原理和算法,并且能够应用于实际问题的解决。 下载machine learning for beginners可以获得一个系统而易懂的学习指南。对于初学者来说,这样的指南可以帮助他们逐步理解机器学习的概念和方法。这本书通常会包括基础的数学知识和统计学概念,以及常见的机器学习算法和技术示例。 通过学习这本书,初学者可以了解机器学习的工作流程和主要步骤,比如数据预处理、特征工程、模型训练和评估等。除此之外,还可以学习到如何选择适当的机器学习算法、如何调整参数、如何解决过拟合和欠拟合等常见问题。 通过下载这本书,初学者可以通过自学的方式入门机器学习,节省时间和精力。它提供了一个结构化的学习路径,以便初学者可以有目的地学习相关主题。同时,通过实践例子和练习题,初学者可以巩固所学的知识并加深理解。 总而言之,下载machine learning for beginners是对于初学者来说一个有价值的选择。它能够提供一个系统的学习指南,帮助初学者理解和应用机器学习的基本概念和方法。通过这本书的学习,初学者可以迅速入门机器学习,并为未来的学习和实践奠定坚实的基础。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值