cf 1336 Xenia and Colorful Gems
题意 : 给定三组数,分别选择x, y, z,使得
(
x
−
y
)
2
+
(
y
−
z
)
2
+
(
z
−
x
)
2
(x-y)^2 + (y-z)^2 + (z-x)^2
(x−y)2+(y−z)2+(z−x)2 最小。
方法:假设
x
<
y
<
z
x < y < z
x<y<z ,给定 x 和 z,y 最接近于
(
x
+
z
)
/
2
(x+z)/2
(x+z)/2时,对于 x,z,值最小。那么 z 接近于 x 的时候,对于 x, 值最小。枚举 x ,选择最接近于 x 的 z,根据 x 和 z选择 y, 二分。
题目链接
代码
#include<bits/stdc++.h>
using namespace std;
typedef long long ll;
const int N = 1e5+10;
const ll INF = 9e18;
int a[N], b[N], c[N];
int la, lb, lc;
int find(int a[], int len, int x) {
return lower_bound(a, a + len, x) - a;
}
ll cal(int x, int y, int z) {
return (ll)(x-y) * (x-y) + (ll)(x - z) * (x - z) + (ll)(y-z)*(y-z);
}
ll gett(int x, int z, int b[], int lb) {
ll res = INF;
int idx = find(b, lb, x+z >> 1);
int y;
if(idx > 0) {
y = b[idx-1];
res = min(res, cal(x, y, z));
}
if(idx < lb) {
y = b[idx];
res = min(res, cal(x, y, z));
}
return res;
}
ll solve(int a[], int la, int b[], int lb, int c[], int lc) {
ll res = INF;
for(int i = 0; i < la; i++) {
int x = a[i], y, z;
int idx = find(c, lc, x);
if(idx > 0) {
z = c[idx-1];
res = min(res, gett(x, z, b, lb));
}
if(idx < lc) {
z = c[idx];
res = min(res, gett(x, z, b, lb));
}
}
return res;
}
int main() {
int T;
scanf("%d", &T);
while(T -- ) {
scanf("%d%d%d", &la, &lb, &lc);
for(int i = 0; i < la; i++) scanf("%d", &a[i]);
for(int i = 0; i < lb; i++) scanf("%d", &b[i]);
for(int i = 0; i < lc; i++) scanf("%d", &c[i]);
sort(a, a + la), sort(b, b + lb), sort(c, c + lc);
ll ans = INF;
ans = min(ans, solve(a, la, b, lb, c, lc));
ans = min(ans, solve(c, lc, b, lb, a, la));
ans = min(ans, solve(a, la, c, lc, b, lb));
ans = min(ans, solve(b, lb, c, lc, a, la));
ans = min(ans, solve(c, lc, a, la, b, lb));
ans = min(ans, solve(b, lb, a, la, c, lc));
printf("%lld\n", ans);
}
return 0;
}