# coding=utf-8
import tensorflow as tf
import numpy as np
import matplotlib as mpl
mpl.use('TkAgg')
import matplotlib.pyplot as plt
"""
定义添加层
"""
def add_layer(inputs,in_size,out_size,activation_func=None):
Weights = tf.Variable(tf.random_normal([in_size,out_size]))
biases = tf.Variable(tf.zeros([1,out_size])+0.1)
Wx_plus_b = tf.matmul(inputs,Weights)+biases
if activation_func is None:
outputs = Wx_plus_b
else:
outputs = activation_func(Wx_plus_b)
return outputs
"""
随机生成输入数据,定义一元二次函数,并添加噪点使其更像真实数据
"""
#np.newaxis添加新维度,结果为300*1矩阵
x_data = np.linspace(-1,1,300)[:,np.newaxis]
noise = np.random.normal(0,0.05,x_data.shape)
y_data = np.square(x_data)-0.5+noise
"""
xs,ys是为了方便实现batch
其中None表示样本数,1表示样本的维度
"""
xs = tf.placeholder(tf.float32,[None,1])
ys = tf.placeholder(tf.float32,[None,1])
"""
添加隐藏层和输出层
1,10,1分别表示输入层,隐藏层,输出层神经元的个数
"""
l1 = add_layer(xs,1,10,activation_func=tf.nn.relu)
prediction = add_layer(l1,10,1,activation_func=None)
"""
计算loss
reduction_indices[1]按行求和,reduction_indices[0]按列求和
"""
loss = tf.reduce_mean(tf.reduce_sum(tf.square(ys-prediction),reduction_indices=[1]))
train_step = tf.train.GradientDescentOptimizer(0.1).minimize(loss)
#变量初始化
init = tf.initialize_all_variables()
sess = tf.Session()
sess.run(init)
#可视化操作
fig = plt.figure()
ax = fig.add_subplot(1,1,1)
ax.scatter(x_data,y_data)
#打开交互模式
plt.ion()
#训练
for i in range(1000):
sess.run(train_step, feed_dict={xs:x_data, ys:y_data})
if i%50 == 0:
print(sess.run(loss,feed_dict={xs:x_data,ys:y_data}))
try:
ax.lines.remove(lines[0])
except Exception:
pass
prediction_value = sess.run(prediction,feed_dict={xs:x_data})
lines = ax.plot(x_data,prediction_value,'r-',lw=5)
plt.pause(0.1)
#显示前关闭交互模式
plt.ioff()
plt.show()