# coding=utf-8
import tensorflow as tf
#导入mnist数据集
from tensorflow.examples.tutorials.mnist import input_data
#若数据集不存在则下载更新
mnist = input_data.read_data_sets('MNIST_data',one_hot = True)
#定义层
def add_layer(inputs,in_size,out_size,activation_function=None):
Weights = tf.Variable(tf.random_normal([in_size,out_size]))
biases = tf.Variable(tf.zeros([1,out_size]))
Wx_plus_b = tf.matmul(inputs,Weights)+biases
if activation_function is None:
outputs = Wx_plus_b
else:
outputs = activation_function(Wx_plus_b)
return outputs
#定义准确度函数
def compute_accuracy(v_xs,v_ys):
global prediction
y_pre = sess.run(prediction,feed_dict={xs:v_xs})
"""
tf.argmax(A,axis)
axis为0表示对行进行操作(对每列中的不同行进行比较),返回对应最大值的索引
axis为1表示对列进行操作(对每行中的不同列进行比较),返回对应最大值的索引
tf.equal()
判断两矩阵或向量中的个元素是否相等
"""
correct_prediction = tf.equal(tf.argmax(y_pre,1),tf.argmax(v_ys,1))
"""
tf.cast()
转换数据类型
"""
accuracy = tf.reduce_mean(tf.cast(correct_prediction,tf.float32))
result = sess.run(accuracy,feed_dict={xs:v_xs,ys:v_ys})
return result
#定义输入层的placeholder
xs = tf.placeholder(tf.float32,[None,784])
ys = tf.placeholder(tf.float32,[None,10])
#添加输出层
prediction = add_layer(xs,784,10,activation_function=tf.nn.softmax)
#计算交叉熵,计算公式为H(p.q)=-sum(p(x)logq(x)),其中p为期望输出,q为实际输出
cross_entropy = tf.reduce_mean(-tf.reduce_sum(ys*tf.log(prediction),reduction_indices=[1]))
train_step = tf.train.GradientDescentOptimizer(0.5).minimize(cross_entropy)
sess = tf.Session()
init = tf.initialize_all_variables()
sess.run(init)
#训练
for i in range(1000):
batch_xs,batch_ys = mnist.train.next_batch(50)
sess.run(train_step,feed_dict={xs:batch_xs,ys:batch_ys})
if i%50 ==0:
print(compute_accuracy(mnist.test.images,mnist.test.labels))