Link:http://poj.org/problem?id=3233
Matrix Power Series
Description Given a n × n matrix A and a positive integer k, find the sum S = A + A2 + A3 + … + Ak. Input The input contains exactly one test case. The first line of input contains three positive integers n (n ≤ 30), k (k ≤ 109) and m (m < 104). Then follow n lines each containing n nonnegative integers below 32,768, giving A’s elements in row-major order. Output Output the elements of S modulo m in the same way as A is given. Sample Input 2 2 4 0 1 1 1 Sample Output 1 2 2 3 Source
POJ Monthly--2007.06.03, Huang, Jinsong
|
AC code:
#include<iostream>
#include<cstdio>
#include<cstring>
#include<cmath>
#include<algorithm>
#include<vector>
#include<queue>
#include<map>
#define LL long long
#define MAXN 1000010
using namespace std;
const int INF=0x3f3f3f3f;
//----以下为矩阵快速幂模板-----//
//const int mod=1000;//模3,故这里改为3即可
int mod=1000;
const int NUM=32;//定义矩阵能表示的最大维数
int N;//N表示矩阵的维数,以下的矩阵加法、乘法、快速幂都是按N维矩阵运算的
struct Mat{//矩阵的类
int a[NUM][NUM];
Mat(){memset(a,0,sizeof(a));}
void init()//将其初始化为单位矩阵
{
memset(a,0,sizeof(a));
for(int i=0;i<NUM;i++)
{
a[i][i]=1;
}
}
};
Mat add(Mat a,Mat b)//(a+b)%mod 矩阵加法
{
Mat ans;
for(int i=0;i<N;i++)
{
for(int j=0;j<N;j++)
{
ans.a[i][j]=(a.a[i][j]%mod)+(b.a[i][j]%mod);
ans.a[i][j]%=mod;
}
}
return ans;
}
Mat mul(Mat a,Mat b) //(a*b)%mod 矩阵乘法
{
Mat ans;
for(int i=0;i<N;i++)
{
for(int j=0;j<N;j++)
{
ans.a[i][j]=0;
for(int k=0;k<N;k++)
{
ans.a[i][j]=(ans.a[i][j]%mod)+(a.a[i][k]%mod)*(b.a[k][j]%mod);
}
ans.a[i][j]%=mod;
}
}
return ans;
}
Mat power(Mat a,int num)//(a^n)%mod 矩阵快速幂
{
Mat ans;
ans.init();
while(num)
{
if(num&1)
{
ans=mul(ans,a);
}
num>>=1;
a=mul(a,a);
}
return ans;
}
Mat pow_sum(Mat a,int num)//(a+a^2+a^3....+a^n)%mod 矩阵的幂和
{
int m;
Mat ans,pre;
if(num==1)
return a;
m=num/2;
pre=pow_sum(a,m);
ans=add(pre,mul(pre,power(a,m)));
if(num&1)
ans=add(ans,power(a,num));
return ans;
}
void output(Mat a)//输出矩阵
{
for(int i=0;i<N;i++)
{
for(int j=0;j<N;j++)
{
printf("%d%c",a.a[i][j],j==N-1?'\n':' ');
}
}
}
//----以上为矩阵快速幂模板-----//
int main()
{
//freopen("D:\in.txt","r",stdin);
int n,m,i,j,T,k;
scanf("%d%d%d",&n,&k,&m);
Mat A,S;
N=n;
mod=m;
for(i=0;i<N;i++)
{
for(j=0;j<N;j++)
{
scanf("%d",&A.a[i][j]);
}
}
S=pow_sum(A,k);
output(S);
return 0;
}