Problem Killer(递推)


Link:http://acm.hdu.edu.cn/showproblem.php?pid=5328

Problem Killer

Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others)
Total Submission(s): 153    Accepted Submission(s): 61


Problem Description
You are a "Problem Killer", you want to solve many problems. 
Now you have  n  problems, the  i -th problem's difficulty is represented by an integer  ai  ( 1ai109 ).
For some strange reason, you must choose some integer  l  and  r  ( 1lrn ), and solve the problems between the  l -th and the  r -th, and these problems' difficulties must form an AP (Arithmetic Progression) or a GP (Geometric Progression). 
So how many problems can you solve at most?

You can find the definitions of AP and GP by the following links:
https://en.wikipedia.org/wiki/Arithmetic_progression
https://en.wikipedia.org/wiki/Geometric_progression
 

Input
The first line contains a single integer  T , indicating the number of cases. 
For each test case, the first line contains a single integer  n , the second line contains  n  integers  a1,a2,,an

T104,n106
 

Output
For each test case, output one line with a single integer, representing the answer.
 

Sample Input
  
  
2 5 1 2 3 4 6 10 1 1 1 1 1 1 2 3 4 5
 

Sample Output
  
  
4 6
 

Source
 


分析:该题求的是区间中连续的数组元素所能构成等差数列或等比数列的最长长度是多少。主要解题思想是用f1[i]、f2[i]表示以a[i]结尾的最长等差数列、最长等比数列的长度,然后 利用等差数列、等比数列的性质,可得到若能构成等差数列或等比数列,则相应的有递推公式f1[i]=f1[i-1]+1或f2[i]=f2[i-1]+1。详见代码注释。


AC code:

#include<iostream>
#include<algorithm>
#include<cstdio>
#include<cstring>
#include<vector>
#include<queue>
#include<map>
#include<cmath>
#define LL long long
#define MAXN 1000010
using namespace std;
LL a[MAXN],f1[MAXN],f2[MAXN];//f1[i]、f2[i]表示以a[i]结尾的最长等差数列、最长等比数列的长度 
int main()
{
	int t,n,i,j;
	LL ans;
	scanf("%d",&t);
	while(t--)
	{
		scanf("%d",&n);
		for(i=1;i<=n;i++)
		{
			scanf("%lld",&a[i]);
		}
		if(n<=2)
		{
			ans=n;
		}
		else
		{
			ans=2;
			for(i=1;i<=n;i++)
			{
				f1[i]=2;
				f2[i]=2;
			}
			for(i=3;i<=n;i++)
			{
				if(a[i-1]*2==a[i-2]+a[i])//等差数列性质 
				{
					f1[i]=f1[i-1]+1;
				}
				if(a[i]*a[i-2]==a[i-1]*a[i-1])// 等比数列性质 
				{
					f2[i]=f2[i-1]+1;
				}
				ans=max(ans,max(f1[i],f2[i]));
			}
		}
		printf("%lld\n",ans);	
	}
	return 0;
}




评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

林下的码路

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值