Sum It Up(DFS+剪枝+去重)

Link:http://acm.zju.edu.cn/onlinejudge/showProblem.do?problemId=711


ZOJ Problem Set - 1711
Sum It Up

Time Limit: 2 Seconds       Memory Limit: 65536 KB

Given a specified total t and a list of n integers, find all distinct sums using numbers from the list that add up to t. For example, if t = 4, n = 6, and the list is [4, 3, 2, 2, 1, 1], then there are four different sums that equal 4: 4, 3+1, 2+2, and 2+1+1. (A number can be used within a sum as many times as it appears in the list, and a single number counts as a sum.) Your job is to solve this problem in general.


Input

The input file will contain one or more test cases, one per line. Each test case contains t, the total, followed by n, the number of integers in the list, followed by n integers x 1 , . . . , x n . If n = 0 it signals the end of the input; otherwise, t will be a positive integer less than 1000, n will be an integer between 1 and 12 (inclusive), and x 1 , . . . , x n will be positive integers less than 100. All numbers will be separated by exactly one space. The numbers in each list appear in nonincreasing order, and there may be repetitions.


Output

For each test case, first output a line containing `Sums of', the total, and a colon. Then output each sum, one per line; if there are no sums, output the line `NONE'. The numbers within each sum must appear in nonincreasing order. A number may be repeated in the sum as many times as it was repeated in the original list. The sums themselves must be sorted in decreasing order based on the numbers appearing in the sum. In other words, the sums must be sorted by their first number; sums with the same first number must be sorted by their second number; sums with the same first two numbers must be sorted by their third number; and so on. Within each test case, all sums must be distinct; the same sum cannot appear twice.


Sample Input

4 6 4 3 2 2 1 1
5 3 2 1 1
400 12 50 50 50 50 50 50 25 25 25 25 25 25
0 0


Sample Output

Sums of 4:
4
3+1
2+2
2+1+1
Sums of 5:
NONE
Sums of 400:
50+50+50+50+50+50+25+25+25+25
50+50+50+50+50+25+25+25+25+25+25


AC code:
#include<iostream>
#include<algorithm>
#include<cstring>
#include<cstdio>
#include<queue>
#include<map>
#include<cmath>
using namespace std;
int ans,A,a[13],n,b[13],cnt=0,fg;
bool vis[13];
void dfs(int s)
{
	if(s==A)
	{
		fg=1;
		printf("%d",b[1]);
		for(int j=2;j<=cnt;j++)
		{
			printf("+%d",b[j]);
		}
		puts("");
		//ans++;
		return;
	}
	for(int i=1;i<=n;i++)
	{
		if(!vis[i]&&s+a[i]<=A)
		{
			if(cnt>0&&b[cnt]<a[i])//确保格式从大到小
			{
				continue;
			}
			b[++cnt]=a[i];
			vis[i]=true;
			s+=a[i];
			dfs(s);
			vis[i]=false;
			cnt--;
			s-=a[i];
			while(i+1<=n&&a[i+1]==a[i])<span style="color: rgb(51, 51, 51); font-family: 宋体; font-size: 14px; line-height: 28px;">//搜索完毕后,若下一个搜索的数仍与当前相同,则寻找下一个不同的数进行搜索。{去重}   </span>
			{
				i++;
			}
		}	
	}
}
int main()
{
    int i;
    while(~scanf("%d",&A))
    {
    	scanf("%d",&n);
    	if(A==0&&n==0)
    	{
    		break;
		}
    	for(i=1;i<=n;i++)
    	{
    		scanf("%d",&a[i]);
		}
		memset(vis,false,sizeof(vis));
		fg=0;
		cnt=0;
	//	ans=0;
    	printf("Sums of %d:\n",A);
		dfs(0);
		if(!fg)
		{
			printf("NONE\n");
		}
	//	printf("%d\n",ans);
	}

	return 0;
 } 




评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

林下的码路

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值