参考:参考链接1
之前的滑动窗口准备2
构建自己的神经网络的三步:
1.准备数据;
2.设计神经网络的结构;
3.设置参数,用数据训练网络。
我们的数据有两类,单个苹果(1文件夹)和非单个苹果(0文件夹)。
首先是将文件中的图片导入、格式化、划分训练集测试集交叉验证集,求取均值后以.mat的格式存储在磁盘上。
cnn_setup_data.m:
function imdb =cnn_setup_data(datadir)
%输入为存放多个分类的文件夹地址,输出为imdb结构体
inputSize =[64,64]; %输入图像尺寸
subdir=dir(datadir); %
imdb.images.data=[];
imdb.images.labels=[];
imdb.images.set = [] ;
imdb.meta.sets = {'train', 'val', 'test'} ;
image_counter=0;
trainratio=0.8;%0.8的数据用于训练,0.2的数据用于测试
for i=3:length(subdir)
imdb.meta.classes(i-2) = {subdir(i).name}; %提取类名
imgfiles=dir(fullfile(datadir,subdir(i).name));
imgpercategory_count=length(imgfiles)-2;%计算每类的样本个数
disp([i-2 imgpercategory_count]);%在工作区显示类名和该类的样本数
image_counter=image_counter+imgpercategory_count;%计算总的样本数
for j=3:length(imgfiles)
img=imread(fullfile(datadir,subdir(i).name,imgfiles(j).name)); %读取每类中的每一张图像
img=imresize(img, inputSize(1:2)); %把图像imresize成inputSize大小的输入,建议查一下imresize函数的用法,我们原始的图像不必一定是严格的64*64,因为···
img=single(img);
imdb.images.data(:,:,:,end+1)=single(img);
imdb.images.labels(end+1)= i-2;%这两句把标签和图像对上号
if j-2<imgpercategory_count*trainratio
imdb.images.set(end+1)=1;
else
imdb.images.set(end+1)=2;%前0.8用于训练。后0.2用于验证,分别在set里打上“1”和“2”的标签。一般来说,1是训练,2是验证,3是测试。但是我发现把第二部分打上’2‘和’3‘是等价的?最后迭代的结果图都一模一样···
end
end
end
dataMean=mean(imdb.images.data,4); %如前所知,第四个维度是存储的图像,所以求均值
imdb.images.data = single(bsxfun(@minus,imdb.images.data, dataMean)) ;
imdb.images.data_mean = single(dataMean);%哦哦知道这个地方的作用了
end
第二部分即是初始化神经网络,
这一部分包含了对神经网络各个层的设计(每一层的种类、维度、正则化以及在训练中的一些参数等。)
function net = cnn_mnist_init(varargin)
% 初始化一个类似于mnist的CNN
opts.batchNormalization = true ; %进行归一化操作
opts.networkType = 'simplenn' ; %网络类型为simplenn
opts = vl_argparse(opts, varargin) ;%
rng('default');
rng(0) ;
f=1/100 ;
net.layers = {} ;
net.layers{end+1} = struct('type', 'conv', ...
'weights', {{f*randn(5,5,3,20, 'single'), zeros(1, 20, 'single')}}, ...
'stride', 1, ...
'pad', 0) ;
net.layers{end+1} = struct('type', 'pool', ...
'method', 'max', ...
'pool', [2 2], ...
'stride', 2, ...
'pad', 0) ;
net.layers{end+1} = struct('type', 'conv', ...
'weights', {{f*randn(10,10,20,50, 'single'),zeros(1,50,'single')}}, ...
'stride', 1, ...
'pad', 0) ;
net.layers{end+1} = struct('type', 'pool', ...
'method', 'max', ...
'pool', [2 2], ...
'stride', 2, ...
'pad', 0) ;
net.layers{end+1} = struct('type', 'conv', ...
'weights', {{f*randn(10,10,50,500, 'single'), zeros(1,500,'single')}}, ...
'stride', 1, ...
'pad', 0) ;
net.layers{end+1} = struct('type', 'relu') ;
net.layers{end+1} = struct('type', 'conv', ...
'weights', {{f*randn(1,1,500,4, 'single'), zeros(1,4,'single')}}, ...
'stride', 1, ...
'pad', 0) ;
net.layers{end+1} = struct('type', 'softmaxloss') ;
% optionally switch to batch normalization
if opts.batchNormalization
net = insertBnorm(net, 1) ;
net = insertBnorm(net, 4) ;
net = insertBnorm(net, 7) ;
end
% Meta parameters
net.meta.inputSize = [64 64] ;
net.meta.trainOpts.learningRate = 0.0005 ;
net.meta.trainOpts.numEpochs = 30 ;
net.meta.trainOpts.batchSize = 200 ;
% Fill in defaul values
net = vl_simplenn_tidy(net) ;
% Switch to DagNN if requested
switch lower(opts.networkType)
case 'simplenn'
% done
case 'dagnn'
net = dagnn.DagNN.fromSimpleNN(net, 'canonicalNames', true) ;
net.addLayer('top1err', dagnn.Loss('loss', 'classerror'), ...
{'prediction', 'label'}, 'error') ;
net.addLayer('top5err', dagnn.Loss('loss', 'topkerror', ...
'opts', {'topk', 5}), {'prediction', 'label'}, 'top5err') ;
otherwise
assert(false) ;
end
% --------------------------------------------------------------------
function net = insertBnorm(net, l)
% --------------------------------------------------------------------
assert(isfield(net.layers{l}, 'weights'));
ndim = size(net.layers{l}.weights{1}, 4);
layer = struct('type', 'bnorm', ...
'weights', {{ones(ndim, 1, 'single'), zeros(ndim, 1, 'single')}}, ...
'learningRate', [1 1 0.05], ...
'weightDecay', [0 0]) ;
net.layers{l}.biases = [] ;
net.layers = horzcat(net.layers(1:l), layer, net.layers(l+1:end)) ;
第三步为训练网络:
function [net, info] = cnn_mnist(varargin)
run(fullfile(fileparts(mfilename('fullpath')),...
'..', '..', 'matlab', 'vl_setupnn.m')) ;
opts.batchNormalization = true; %??
opts.networkType = 'simplenn' ;
[opts, varargin] = vl_argparse(opts, varargin) ;
sfx = opts.networkType ;
if opts.batchNormalization, sfx = [sfx '-bnorm'] ; end
datadir='E:\学习\机器学习\matconvnet-1.0-beta20\photos\multi-label';
opts.expDir = fullfile(vl_rootnn, 'data', ['mnist-zyp-' sfx]) ;
[opts, varargin] = vl_argparse(opts, varargin) ;
%opts.dataDir = fullfile(vl_rootnn, 'data', 'mnist') ;
opts.imdbPath = fullfile(opts.expDir, 'imdb.mat');
opts.train = struct() ;
opts = vl_argparse(opts, varargin) ;
if ~isfield(opts.train, 'gpus'), opts.train.gpus = []; end;
% --------------------------------------------------------------------
% Prepare data
% --------------------------------------------------------------------
net = cnn_mnist_init('batchNormalization', opts.batchNormalization, ...
'networkType', opts.networkType) ;
if exist(opts.imdbPath, 'file')
imdb = load(opts.imdbPath) ;
else
imdb=cnn_setup_data(datadir);
mkdir(opts.expDir) ;
save(opts.imdbPath, '-struct', 'imdb') ;
end
net.meta.classes.name = arrayfun(@(x)sprintf('%d',x),1:2,'UniformOutput',false) ;
% --------------------------------------------------------------------
% Train
% --------------------------------------------------------------------
switch opts.networkType
case 'simplenn', trainfn = @cnn_train ;
case 'dagnn', trainfn = @cnn_train_dag ;
end
[net, info] = trainfn(net, imdb, getBatch(opts), ...
'expDir', opts.expDir, ...
net.meta.trainOpts, ...
opts.train, ...
'val', find(imdb.images.set == 3)) ;
net.meta.data_mean = imdb.images.data_mean;
net.layers{end}.class = [1] ;
% --------------------------------------------------------------------
function fn = getBatch(opts)
% --------------------------------------------------------------------
switch lower(opts.networkType)
case 'simplenn'
fn = @(x,y) getSimpleNNBatch(x,y) ;
case 'dagnn'
bopts = struct('numGpus', numel(opts.train.gpus)) ;
fn = @(x,y) getDagNNBatch(bopts,x,y) ;
end
% --------------------------------------------------------------------
function [images, labels] = getSimpleNNBatch(imdb, batch)
% --------------------------------------------------------------------
images = imdb.images.data(:,:,:,batch) ;
labels = imdb.images.labels(1,batch) ;
% --------------------------------------------------------------------
function inputs = getDagNNBatch(opts, imdb, batch)
% --------------------------------------------------------------------
images = imdb.images.data(:,:,:,batch) ;
labels = imdb.images.labels(1,batch) ;
if opts.numGpus > 0
images = gpuArray(images) ;
end
inputs = {'input', images, 'label', labels} ;
训练结果:
四、应用-测试程序
%初次运行一次,之后不再运行
%[net_bn, info_bn] = cnn_mnist('batchNormalization', true);
load('F:\matconvnet-1.0-beta23\data\apple-fry-simplenn-bnorm\imdb.mat');
im=imread('F:\matconvnet-1.0-beta23\oneapple.png');
im=imresize(im,[64 64 ]);
imshow(im);
im = single(im);
im = im - images.data_mean;
res = vl_simplenn(net_bn, im,[],[],...
'accumulate', 0, ...
'mode', 'test', ...
'backPropDepth', inf, ...
'sync', 0, ...
'cudnn', 1) ;
scores = res(11).x(1,1,:);
[bestScore, best] = max(scores);
switch best
case 1
title('判断结果:不是苹果');
case 2
title('判断结果:1个苹果');
% case 3
% title('判断结果:2个苹果');
% case 4
% title('判断结果:3个苹果');
end
运行结果:
这时候,我们可以和之前的滑动窗口联系起来,
主程序:
% setup MatConvNet
run matlab/vl_setupnn
% load the pre-trained CNN
%net = dagnn.DagNN.loadobj(load('imagenet-googlenet-dag.mat')) ;
net = load('F:\matconvnet-1.0-beta23\data\apple-fry-simplenn-bnorm\imdb.mat');
net.mode = 'test' ;
a = zeros(1,1);
a = input('Please input the pngs name.\n','s');
a = ['photos/',a];
% load and preprocess an image
im = imread(a);
addpath test;
[ out_image,n ] = var_slide( im, 100, 100, 100, 100, net );figure;imshow(out_image);
saveas(gcf,'myfig.jpg');
运行时如果直接套用会出现很多问题,原因是我们自己训练出来的imdb.mat和imagenet-googlenet-dag.mat结构上有很多不同之处。
主要问题出在slide.m上,比如:
这时我们最好的办法是重写slide.m,也很简单,只需做一些简单的修改,
置信度设为0.1时,23333333
问题出在分类上,分成了四类。后头重新训练···懒得写了,有空再继续。