import numpy as np
from scipy.linalg import lstsq
m = 80
n = 40
A = np.random.normal(1, 2, (m, n))
b = np.random.normal(1, 2, (m, 1))
r_norm = lstsq(A, b)[1]
print(r_norm)
输出:
[203.82746375]
import numpy as np
from scipy.optimize import fmin
def func(x):
return (np.sin((x-2)*(np.exp(-x**2)))**2)*(-1)
xopt = fmin(func, 0)
print(xopt[0], -func(xopt[0]))
输出:
Optimization terminated successfully.
Current function value: -1.000000
Iterations: 21
Function evaluations: 42
0.2906875000000003 0.9999999997859061
import numpy as np
from scipy import optimize
from scipy.spatial import distance
m = 30
n = 6
A = np.random.normal(1, 2, (n, m))
C = distance.pdist(A)
C = distance.squareform(C)
print(C)
输出:
[[ 0. 17.16746799 15.91489311 16.8122172 19.99007586 18.61492197]
[17.16746799 0. 14.85630827 19.14838444 18.22197593 15.23586407]
[15.91489311 14.85630827 0. 16.3998096 12.51200226 13.12386771]
[16.8122172 19.14838444 16.3998096 0. 16.83916137 16.806151 ]
[19.99007586 18.22197593 12.51200226 16.83916137 0. 14.83112775]
[18.61492197 15.23586407 13.12386771 16.806151 14.83112775 0. ]]