【论文阅读#4】Carnus: Exploring the Privacy Threats of Browser Extension Fingerprinting

本文研究了浏览器扩展的隐私威胁,介绍了Carnus系统,一个用于检测和创建基于行为的扩展指纹的自动化工具。研究发现,83.6% - 87.92%的行为指纹在对抗反跟踪机制时仍有效。通过分析扩展的通信模式,作者揭示了扩展可能泄露的敏感信息,并提出基于扩展评论的去匿名化攻击。此外,还探讨了如何从扩展中推断用户的私人信息,强调了对扩展安全性的关注和更有效对策的必要性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

一、论文信息

本文是发表在NDSS 2020上的一篇文章,与上一篇作者从加密流量中提取移动应用程序指纹不同的是,本篇文章主要针对于浏览器上的扩展应用(extension),并且提取指纹的方式也是通过扩展的一些静态与动态的特征。除此之外,作者还探究了扩展指纹对用户造成的隐私威胁程度,基于扩展的一些性质,可能无意中泄露用户的敏感信息,例如国家、性别、民族等。

1.1、摘要原文

With users becoming increasingly privacy-aware and browser vendors incorporating anti-tracking mechanisms, browser fingerprinting has garnered significant attention. Accordingly, prior work has proposed techniques for identifying browser extensions and using them as part of a device s fingerprint.  While previous studies have demonstrated how extensions can be detected through their web accessible resources, there exists a significant gap regarding techniques that indirectly detect extensions through behavioral artifacts. In fact, no prior study has demonstrated that this can be done in an automated fashion. In this paper, we bridge this gap by presenting the first fully automated creation and detection of behavior-based extension fingerprints. We also introduce two novel fingerprinting techniques that monitor extensions communication patterns, namely outgoing HTTP requests and intra-browser message exchanges. These techniques comprise the core of Carnus, a modular system for the static and dynamic analysis of extensions, which we use to create the largest set of extension fingerprints to date. We leverage our dataset of 29,428 detectable extensions to conduct a comprehensive investigation of extension fingerprinting in realistic settings and demonstrate the practicality of our attack. Our in-depth analysis confirms the robustness of our techniques, as 83.6% - 87.92% of our behavior-based fingerprints remain effective against a state-of-the-art countermeasure.

Subsequently, we aim to explore the true extent of the privacy threat that extension fingerprinting poses to users, and present a novel study on the feasibility of inference attacks that reveal private and sensitive user information based on the functionality and nature of their extensions. We first collect over 1.44 million public user reviews of our detectable extensions, which provide a unique macroscopi

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值