题目链接
题目描述
There is a kind of balanced binary search tree named red-black tree in the data structure. It has the following 5 properties:
- (1) Every node is either red or black.
- (2) The root is black.
- (3) Every leaf (NULL) is black.
- (4) If a node is red, then both its children are black.
- (5) For each node, all simple paths from the node to descendant leaves contain the same number of black nodes.
For example, the tree in Figure 1 is a red-black tree, while the ones in Figure 2 and 3 are not.
| | |
---|---|---|
Figure 1 | Figure 2 | Figure 3 |
For each given binary search tree, you are supposed to tell if it is a legal red-black tree.
Input Specification:
Each input file contains several test cases. The first line gives a positive integer K (≤30) which is the total number of cases. For each case, the first line gives a positive integer N (≤30), the total number of nodes in the binary tree. The second line gives the preorder traversal sequence of the tree. While all the keys in a tree are positive integers, we use negative signs to represent red nodes. All the numbers in a line are separated by a space. The sample input cases correspond to the trees shown in Figure 1, 2 and 3.
Output Specification:
For each test case, print in a line "Yes" if the given tree is a red-black tree, or "No" if not.
Sample Input:
3
9
7 -2 1 5 -4 -11 8 14 -15
9
11 -2 1 -7 5 -4 8 14 -15
8
10 -7 5 -6 8 15 -11 17
结尾无空行
Sample Output:
Yes
No
No
结尾无空行
题目大意
给你一棵平衡二叉树的先序序列,整数代表是黑,负数代表是红,让你判断是不是红黑树
红黑树
1.根节点为黑
2.叶子结点(为NULL)为黑
3.如果一个节点为红结点,它的儿子结点必须为黑节点
4.任意一个结点到左右子树的叶子结点经过的黑节点数目必须相同
解题思路
一开始写了一个dfs结果跑不起来
可以将一个dfs拆分成两个dfs,一个用来判断条件3,一个判断条件4
条件3没啥好说的,主要是条件4
遍历每一个节点,每个节点的左右子树的黑节点高度必须相等(?也没理解这句话啥意思)
题解
#include<bits/stdc++.h>
using namespace std;
struct Node{
int val;
int flag=0;
int num=0;
struct Node* left;
struct Node* right;
int sub=-1;
};
//0 黑
//1 红
Node* insert(Node* root,int val,int flag){
if(root==NULL){
root=new Node();
root->left=NULL;
root->right=NULL;
root->val=val;
root->flag=flag;
}
else{
if(val>root->val){
root->right=insert(root->right,val,flag);
}
else{
root->left=insert(root->left,val,flag);
}
}
return root;
}
vector<Node*> v;
bool dfs1(Node* root,int flag){
if(root==NULL) return true;
if(flag==1&&root->flag==1) return false;
return dfs1(root->left,root->flag)&&dfs1(root->right,root->flag);
}
int getNum(Node* root){
if(root==NULL) return 1;
int l=getNum(root->left);
int r=getNum(root->right);
return (root->flag==0)?min(l,r)+1:min(l,r);
}
bool dfs2(Node* root){
if(root==NULL) return true;
int left=getNum(root->left);
int right=getNum(root->right);
if(left!=right) return false;
return dfs2(root->left)&&dfs2(root->right);
}
int main(){
int t;
cin>>t;
while(t--){
int n;
scanf("%d",&n);
int data;
Node* root;
int flag;
for(int i=0;i<n;i++){
scanf("%d",&data);
if(data>=0) flag=0; //黑
else flag=1; //红
if(i==0){
root=new Node();
root->left=NULL;
root->right=NULL;
root->val=data;
root->flag=flag;
}
else
root=insert(root,abs(data),flag);
}
if(root->flag==0&&dfs1(root,0)&&dfs2(root)) cout<<"Yes"<<endl;
else cout<<"No"<<endl;
}
}