Leetcode 303.区域和检索——数组不可变
- 区域和检索 - 数组不可变
给定一个整数数组 nums,求出数组从索引 i 到 j(i ≤ j)范围内元素的总和,包含 i、j 两点。
实现 NumArray 类:
NumArray(int[] nums) 使用数组 nums 初始化对象
int sumRange(int i, int j) 返回数组 nums 从索引 i 到 j(i ≤ j)范围内元素的总和,包含 i、j 两点(也就是 sum(nums[i], nums[i + 1], ... , nums[j]))
示例:
输入:
[“NumArray”, “sumRange”, “sumRange”, “sumRange”]
[[[-2, 0, 3, -5, 2, -1]], [0, 2], [2, 5], [0, 5]]
输出:
[null, 1, -1, -3]
解释:
NumArray numArray = new NumArray([-2, 0, 3, -5, 2, -1]);
numArray.sumRange(0, 2); // return 1 ((-2) + 0 + 3)
numArray.sumRange(2, 5); // return -1 (3 + (-5) + 2 + (-1))
numArray.sumRange(0, 5); // return -3 ((-2) + 0 + 3 + (-5) + 2 + (-1))
提示:
0 <= nums.length <= 104
-105 <= nums[i] <= 105
0 <= i <= j < nums.length
最多调用 104 次 sumRange 方法
/**
*建立一个新数组,利用动态规划的原理,将前面的数与自己相加算出的和值写到对应
*数组下标里
*/
class NumArray {
private int[] arrayNum;
/**
*将前面数组的数据之和与自身相加并填入相应的下标内
*/
public NumArray(int[] nums) {
if(nums.length > 0){
arrayNum = new int[nums.length];
arrayNum[0] = nums[0];
for(int i = 1;i < nums.length;i++){
arrayNum[i] = arrayNum[i - 1] + nums[i];
}
}
}
/**
*将每一个限定范围内的数组将用最大范围的下标内的数据
*减去最小范围的下标的数据
*/
public int sumRange(int i, int j) {
if(i == 0){
return arrayNum[j];
}else{
return arrayNum[j] - arrayNum[i - 1];
}
}
}
执行结果:
通过
显示详情
执行用时:10 ms, 在所有 Java 提交中击败了95.02% 的用户
内存消耗:41 MB, 在所有 Java 提交中击败了98.70% 的用户
本文介绍LeetCode 303题“区域和检索——数组不可变”的解决方案,通过构建新数组实现快速求和,提高求和效率。
75

被折叠的 条评论
为什么被折叠?



