Transformer结构介绍和Pyotrch代码实现

本文介绍了Transformer模型的基本结构,包括Encoder和Decoder的组成,以及注意力机制在其中的作用。并提供了PyTorch实现的简化代码,展示了如何构建和使用Transformer模型进行自然语言处理任务。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Transformer结构介绍和Pyotrch代码实现

关注B站查看更多手把手教学:

肆十二-的个人空间-肆十二-个人主页-哔哩哔哩视频 (bilibili.com)

基本结构介绍

Transformer结构是近年来自然语言处理(NLP)领域的重要突破,它完全基于注意力机制(Attention Mechanism)来实现,克服了传统RNN模型无法并行计算以及容易丢失长距离依赖信息的问题。

Transformer模型主要由Encoder和Decoder两部分组成。这两部分都包含多个相同的层,每层都由一个自注意力(Self-Attention)子层和一个前馈神经网络(Feed Forward Neural Network)子层组成。在每个子层之间还使用了残差连接(Residual Connection)和层归一化(Layer Normalization)。

在Encoder部分,输入序列首先经过Word Embedding和Positional Encoding,然后输入到多个Encoder层中。在每个Encoder层中,输入序列会先经过Self-Attention子层,该子层会计算输入序列中每个位置的表示对所有位置的依赖关系,得到加权后的表示。然后,加权后的表示会经过Feed Forward Neural Network子层进行非线性变换。最后,通过残差连接和层归一化得到该层的输出。

在Decoder部分,与Encoder类似,输入序列也会经过Word Embedding和Positional Encoding。但是,在Decoder的Self-Attention子层中,需要考虑到不能看到未来信息的问题,因此需要使用Masked Self-Attention。此外,Decoder还需要一个Encoder-Decoder Attention子层来计算对Encoder输出的依赖关系。最后,通过多个Decoder层的堆叠得到最终的输出序列。

Pytorch代码实现

以下是Transformer结构的一个简化版实现,包括Encoder和Decoder部分,以及相应的代码注释。请注意,为了简洁起见,这个实现省略了一些高级功能,如dropout、层标准化中的可学习参数等。

import torch  
import torch.nn as nn  
import torch.nn.functional as F  
  
# Transformer模型  
class Transformer(nn.Module):  
    def __init__(self, d_model, nhead, num_encoder_layers, num_decoder_layers, dim_feedforward=2048):  
        super(Transformer, self).__init__()  
        # Encoder部分  
        self.encoder = Encoder(d_model, nhead, num_encoder_layers, dim_feedforward)  
        # Decoder部分  
        self.decoder = Decoder(d_model, nhead, num_decoder_layers, dim_feedforward)  
  
    def forward(self, src, tgt, src_mask=None, tgt_mask=None, memory_mask=None, src_key_padding_mask=None, tgt_key_padding_mask=None):  
        # Encoder得到memory  
        memory = self.encoder(src, src_mask=src_mask, src_key_padding_mask=src_key_padding_mask)  
       
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

肆十二

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值