【教程】三分钟学习NCNN算法移植!

部署运行你感兴趣的模型镜像

前言

本文是基于EASY EAI Nano移植NCNN部署库的方法与NCNN成功运行yolov4的Demo所做的教程。

关于NCNN

NCNN是“腾讯优图实验室”首个开源项目,是一个为手机端极致优化的高性能神经网络前向计算框架。并在2017年7月正式开源。NCNN作为腾讯优图最“火”的开源项目之一,在设计之初便将手机端的特殊场景融入核心理念,是业界首个为移动端优化的开源神经网络推断库。能实现无第三方依赖,跨平台操作,在手机端CPU运算速度在开源框架中处于领先水平。基于该平台,开发者能够轻松将深度学习算法移植到手机端,输出高效的执行,进而产出人工智能APP,将AI技术带到用户指尖。

NCNN功能概述

- 支持卷积神经网络,支持多输入和多分支结构,可计算部分分支。

- 无任何第三方库依赖,不依赖 BLAS/NNPACK 等计算框架。

- 纯 C++ 实现,跨平台,支持 android ios 等。

- ARM NEON 汇编级良心优化,计算速度极快。

- 精细的内存管理和数据结构设计,内存占用极低。

-支持多核并行计算加速,ARM big.LITTLE cpu 调度优化。

-支持基于全新低消耗的 vulkan api GPU 加速。

-可扩展的模型设计,支持 8bit 量化 和半精度浮点存储,可导入caffe/pytorch/mxnet/onnx/darknet/keras/tensorflow(mlir) 模型。

-支持直接内存零拷贝引用加载网络模型。

- 可注册自定义层实现并扩展。

*更多详情参考官方Github:https://github.com/Tencent/ncnn


NCNN目前应用在图像分类、风格迁移、目标检测、人脸检测等案例中,并已被多款APP使用。下面正式进入到NCNN算法移植学习吧。

一、源码包下载与编译

1. 源码下载放置到ubuntu

NCNN相关源码可通过我们的百度网盘进行下载(已配置好编译脚本),下载链接为:

https://pan.baidu.com/s/1x_27sNJbjCujJZozBajq4g 提取码:dfji

下载ncnn-master.tar.bz2源码包并移植到虚拟机里面,执行以下指令解压源码包:

$ tar xvf ncnn-master.tar.bz2

即可得到如下所示:

2. NCNN编译

执行以下指令编译:

$ cd ncnn-master/ 
$ ./build-easyeai-nano.sh

编译完成如下图所示:

NCNN库编译完成,生成如下图所示:

二、Yolov4基于NCNN运

1. 例程下载放置到ubuntu

Yolov4基于NCNN运行相关运行Demo可以通过我们的百度网盘进行下载(已配置好编译脚本),下载链接为:

https://pan.baidu.com/s/1x_27sNJbjCujJZozBajq4g 提取码:dfji

下载test_demo.tar.bz2源码包并移植到虚拟机里面,执行以下指令解压源码包:

$ tar xvf test_demo.tar.bz2

得到如下图所示:

2. 编译例程

执行以下指令编译例程:

$ cd test_demo/ 
$ ./build.sh

编译成功后结果如下所示:

3. 在EASY EAI Nano执行例程

在ubuntu推送可执行程序文件到板卡的/userdata目录:

$ adb push test-ncnn-demo-release/ /userdata

在EASY EAI Nano板卡执行程序:

# cd /userdata/test-ncnn-demo-release/ 
# ./test-ncnn-demo test_img/test1.jpg

执行结果如下图所示:

在ubuntu执行以下指令获取识别成功的图片:

$ adb pull /userdata/test-ncnn-demo-release/result.jpg .

最后查看实际的效果图,到这一步就完成啦!

您可能感兴趣的与本文相关的镜像

Yolo-v5

Yolo-v5

Yolo

YOLO(You Only Look Once)是一种流行的物体检测和图像分割模型,由华盛顿大学的Joseph Redmon 和Ali Farhadi 开发。 YOLO 于2015 年推出,因其高速和高精度而广受欢迎

评论 1
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值