最近在学axi4-lite协议,就简单记录一下。
实验概述:通过AXI-Lite实现PS与PL区之间的简单读写功能,其中PS端作为主机,PL端作为从机。PS向PL发送控制指令,以控制PS区LED呼吸灯的频率,实现写操作;PL端检测按键Key的情况,根据按键情况将不同的数据返回给PS端,实现读操作。(原本实验的读操作是读一个温度传感器的数据,但我这边没有器件就改更简单的按键了)
软件环境:Vivado 2020.1
硬件环境:Zynq UltraScale + MPSoC XCZU3EG
实验主要分三部分:分别对应在Vivado软件上使用Verilog编程搭建Soc系统工程(FPGA开发)、在Vitis平台使用C语言搭建SDK工程(ARM)以及实验结果。
1、搭建Soc系统工程
其中,axi_lite_slave和ps_wr_rd_ctrl模块是核心模块。axi_lite_slave是在官方IP代码基础上进行修改的,ps_wr_rd_ctrl模块是自己写的,用于解析指令,产生读写操作的信号。
(1)Axi_lite_slave
Axi_lite从机模块,主要是基于官方IP代码稍作修改(修改不多)
`timescale 1 ns / 1 ps
module axi_lite_slave_v1_0_S00_AXI #
(
// Users to add parameters here
// User parameters ends
// Do not modify the parameters beyond this line
// Width of S_AXI data bus
parameter integer C_S_AXI_DATA_WIDTH = 32,
// Width of S_AXI address bus
parameter integer C_S_AXI_ADDR_WIDTH = 4
)
(
// Users to add ports here
output wr_en, //写使能,高表示写数据、写地址有效
output [3:0] wr_addr, //写数据(PS->PL)
output [31:0] wr_data, //写地址(PS->PL)
output rd_en, //读使能,高表示读数据、读地址有效
output [3:0] rd_addr, //读地址(PL->PS)
input [31:0] rd_data, //读数据(PL->PS)
// User ports ends
// Do not modify the ports beyond this line
// Global Clock Signal
input wire S_AXI_ACLK,
// Global Reset Signal. This Signal is Active LOW
input wire S_AXI_ARESETN,
// Write address (issued by master, acceped by Slave)
input wire [C_S_AXI_ADDR_WIDTH-1 : 0] S_AXI_AWADDR,
// Write channel Protection type. This signal indicates the
// privilege and security level of the transaction, and whether
// the transaction is a data access or an instruction access.
input wire [2 : 0] S_AXI_AWPROT,
// Write address valid. This signal indicates that the master signaling
// valid write address and control information.
input wire S_AXI_AWVALID,
// Write address ready. This signal indicates that the slave is ready
// to accept an address and associated control signals.
output wire S_AXI_AWREADY,
// Write data (issued by master, acceped by Slave)
input wire [C_S_AXI_DATA_WIDTH-1 : 0] S_AXI_WDATA,
// Write strobes. This signal indicates which byte lanes hold
// valid data. There is one write strobe bit for each eight
// bits of the write data bus.
input wire [(C_S_AXI_DATA_WIDTH/8)-1 : 0] S_AXI_WSTRB,
// Write valid. This signal indicates that valid write
// data and strobes are available.
input wire S_AXI_WVALID,
// Write ready. This signal indicates that the slave
// can accept the write data.
output wire S_AXI_WREADY,
// Write response. This signal indicates the status
// of the write transaction.
output wire [1 : 0] S_AXI_BRESP,
// Write response valid. This signal indicates that the channel
// is signaling a valid write response.
output wire S_AXI_BVALID,
// Response ready. This signal indicates that the master
// can accept a write response.
input wire S_AXI_BREADY,
// Read address (issued by master, acceped by Slave)
input wire [C_S_AXI_ADDR_WIDTH-1 : 0] S_AXI_ARADDR,
// Protection type. This signal indicates the privilege
// and security level of the transaction, and whether the
// transaction is a data access or an instruction access.
input wire [2 : 0] S_AXI_ARPROT,
// Read address valid. This signal indicates that the channel
// is signaling valid read address and control information.
input wire S_AXI_ARVALID,
// Read address ready. This signal indicates that the slave is
// ready to accept an address and associated control signals.
output wire S_AXI_ARREADY,
// Read data (issued by slave)
output wire [C_S_AXI_DATA_WIDTH-1 : 0] S_AXI_RDATA,
// Read response. This signal indicates the status of the
// read transfer.
output wire [1 : 0] S_AXI_RRESP,
// Read valid. This signal indicates that the channel is
// signaling the required read data.
output wire S_AXI_RVALID,
// Read ready. This signal indicates that the master can
// accept the read data and response information.
input wire S_AXI_RREADY
);
// AXI4LITE signals
reg [C_S_AXI_ADDR_WIDTH-1 : 0] axi_awaddr;
reg axi_awready;
reg axi_wready;
reg [1 : 0] axi_bresp;
reg axi_bvalid;
reg [C_S_AXI_ADDR_WIDTH-1 : 0] axi_araddr;
reg axi_arready;
reg [C_S_AXI_DATA_WIDTH-1 : 0] axi_rdata;
reg [1 : 0] axi_rresp;
reg axi_rvalid;
// Example-specific design signals
// local parameter for addressing 32 bit / 64 bit C_S_AXI_DATA_WIDTH
// ADDR_LSB is used for addressing 32/64 bit registers/memories
// ADDR_LSB = 2 for 32 bits (n downto 2)
// ADDR_LSB = 3 for 64 bits (n downto 3)
localparam integer ADDR_LSB = (C_S_AXI_DATA_WIDTH/32) + 1;
localparam integer OPT_MEM_ADDR_BITS = 1;
//----------------------------------------------
//-- Signals for user logic register space example
//------------------------------------------------
//-- Number of Slave Registers 4
reg [C_S_AXI_DATA_WIDTH-1:0] slv_reg0;
reg [C_S_AXI_DATA_WIDTH-1:0] slv_reg1;
reg [C_S_AXI_DATA_WIDTH-1:0] slv_reg2;
reg [C_S_AXI_DATA_WIDTH-1:0] slv_reg3;
wire slv_reg_rden;
wire slv_reg_wren;
reg [C_S_AXI_DATA_WIDTH-1:0] reg_data_out;
integer byte_index;
reg aw_en;
// I/O Connections assignments
assign S_AXI_AWREADY = axi_awready;
assign S_AXI_WREADY = axi_wready;
assign S_AXI_BRESP = axi_bresp;
assign S_AXI_BVALID = axi_bvalid;
assign S_AXI_ARREADY = axi_arready;
assign S_AXI_RDATA = axi_rdata;
assign S_AXI_RRESP = axi_rresp;
assign S_AXI_RVALID = axi_rvalid;
// Implement axi_awready generation
// axi_awready is asserted for one S_AXI_ACLK clock cycle when both
// S_AXI_AWVALID and S_AXI_WVALID are asserted. axi_awready is
// de-asserted when reset is low.
always @( posedge S_AXI_ACLK )
begin
if ( S_AXI_ARESETN == 1'b0 )
begin
axi_awready <= 1'b0;
aw_en <= 1'b1;
end
else
begin
if (~axi_awready && S_AXI_AWVALID && S_AXI_WVALID && aw_en)
begin
// slave is ready to accept write address when
// there is a valid write address and write data
// on the write address and data bus. This design
// expects no outstanding transactions.
axi_awready <= 1'b1;
aw_en <= 1'b0;
end
else if (S_AXI_BREADY && axi_bvalid)
begin
aw_en <= 1'b1;
axi_awready <= 1'b0;
end
else
begin
axi_awready <= 1'b0;
end
end
end
// Implement axi_awaddr latching
// This process is used to latch the address when both
// S_AXI_AWVALID and S_AXI_WVALID are valid.
always @( posedge S_AXI_ACLK )
begin
if ( S_AXI_ARESETN == 1'b0 )
begin
axi_awaddr <= 0;
end
else
begin
if (~axi_awready && S_AXI_AWVALID && S_AXI_WVALID && aw_en)
begin
// Write Address latching
axi_awaddr <= S_AXI_AWADDR;
end
end
end
// Implement axi_wready generation
// axi_wready is asserted for one S_AXI_ACLK clock cycle when both
// S_AXI_AWVALID and S_AXI_WVALID are asserted. axi_wready is
// de-asserted when reset is low.
always @( posedge S_AXI_ACLK )
begin
if ( S_AXI_ARESETN == 1'b0 )
begin
axi_wready <= 1'b0;
end
else
begin
if (~axi_wready && S_AXI_WVALID && S_AXI_AWVALID && aw_en )
begin
// slave is ready to accept write data when
// there is a valid write address and write data
// on the write address and data bus. This design
// expects no outstanding transactions.
axi_wready <= 1'b1;
end
else
begin
axi_wready <= 1'b0;
end
end
end
// Implement memory mapped register select and write logic generation
// The write data is accepted and written to memory mapped registers when
// axi_awready, S_AXI_WVALID, axi_wready and S_AXI_WVALID are asserted. Write strobes are used to
// select byte enables of slave registers while writing.
// These registers are cleared when reset (active low) is applied.
// Slave register write enable is asserted when valid address and data are available
// and the slave is ready to accept the write address and write data.
assign slv_reg_wren = axi_wready && S_AXI_WVALID && axi_awready && S_AXI_AWVALID;
/*always @( posedge S_AXI_ACLK )
begin
if ( S_AXI_ARESETN == 1'b0 )
begin
slv_reg0 <= 0;
slv_reg1 <= 0;
slv_reg2 <= 0;
slv_reg3 <= 0;
end
else begin
if (slv_reg_wren)
begin
case ( axi_awaddr[ADDR_LSB+OPT_MEM_ADDR_BITS:ADDR_LSB] )
2'h0:
for ( byte_index = 0; byte_index <= (C_S_AXI_DATA_WIDTH/8)-1; byte_index = byte_index+1 )
if ( S_AXI_WSTRB[byte_index] == 1 ) begin
// Respective byte enables are asserted as per write strobes
// Slave register 0
slv_reg0[(byte_index*8) +: 8] <= S_AXI_WDATA[(byte_index*8) +: 8];
end
2'h1:
for ( byte_index = 0; byte_index <= (C_S_AXI_DATA_WIDTH/8)-1; byte_index = byte_index+1 )
if ( S_AXI_WSTRB[byte_index] == 1 ) begin
// Respective byte enables are asserted as per write strobes
// Slave register 1
slv_reg1[(byte_index*8) +: 8] <= S_AXI_WDATA[(byte_index*8) +: 8];
end
2'h2:
for ( byte_index = 0; byte_index <= (C_S_AXI_DATA_WIDTH/8)-1; byte_index = byte_index+1 )
if ( S_AXI_WSTRB[byte_index] == 1 ) begin
// Respective byte enables are asserted as per write strobes
// Slave register 2
slv_reg2[(byte_index*8) +: 8] <= S_AXI_WDATA[(byte_index*8) +: 8];
end
2'h3:
for ( byte_index = 0; byte_index <= (C_S_AXI_DATA_WIDTH/8)-1; byte_index = byte_index+1 )
if ( S_AXI_WSTRB[byte_index] == 1 ) begin
// Respective byte enables are asserted as per write strobes
// Slave register 3
slv_reg3[(byte_index*8) +: 8] <= S_AXI_WDATA[(byte_index*8) +: 8];
end
default : begin
slv_reg0 <= slv_reg0;
slv_reg1 <= slv_reg1;
slv_reg2 <= slv_reg2;
slv_reg3 <= slv_reg3;
end
endcase
end
end
end */
// Implement write response logic generation
// The write response and response valid signals are asserted by the slave
// when axi_wready, S_AXI_WVALID, axi_wready and S_AXI_WVALID are asserted.
// This marks the acceptance of address and indicates the status of
// write transaction.
always @( posedge S_AXI_ACLK )
begin
if ( S_AXI_ARESETN == 1'b0 )
begin
axi_bvalid <= 0;
axi_bresp <= 2'b0;
end
else
begin
if (axi_awready && S_AXI_AWVALID && ~axi_bvalid && axi_wready && S_AXI_WVALID)
begin
// indicates a valid write response is available
axi_bvalid <= 1'b1;
axi_bresp <= 2'b0; // 'OKAY' response
end // work error responses in future
else
begin
if (S_AXI_BREADY && axi_bvalid)
//check if bready is asserted while bvalid is high)
//(there is a possibility that bready is always asserted high)
begin
axi_bvalid <= 1'b0;
end
end
end
end
// Implement axi_arready generation
// axi_arready is asserted for one S_AXI_ACLK clock cycle when
// S_AXI_ARVALID is asserted. axi_awready is
// de-asserted when reset (active low) is asserted.
// The read address is also latched when S_AXI_ARVALID is
// asserted. axi_araddr is reset to zero on reset assertion.
always @( posedge S_AXI_ACLK )
begin
if ( S_AXI_ARESETN == 1'b0 )
begin
axi_arready <= 1'b0;
axi_araddr <= 32'b0;
end
else
begin
if (~axi_arready && S_AXI_ARVALID)
begin
// indicates that the slave has acceped the valid read address
axi_arready <= 1'b1;
// Read address latching
axi_araddr <= S_AXI_ARADDR;
end
else
begin
axi_arready <= 1'b0;
end
end
end
// Implement axi_arvalid generation
// axi_rvalid is asserted for one S_AXI_ACLK clock cycle when both
// S_AXI_ARVALID and axi_arready are asserted. The slave registers
// data are available on the axi_rdata bus at this instance. The
// assertion of axi_rvalid marks the validity of read data on the
// bus and axi_rresp indicates the status of read transaction.axi_rvalid
// is deasserted on reset (active low). axi_rresp and axi_rdata are
// cleared to zero on reset (active low).
always @( posedge S_AXI_ACLK )
begin
if ( S_AXI_ARESETN == 1'b0 )
begin
axi_rvalid <= 0;
axi_rresp <= 0;
end
else
begin
if (axi_arready && S_AXI_ARVALID && ~axi_rvalid)
begin
// Valid read data is available at the read data bus
axi_rvalid <= 1'b1;
axi_rresp <= 2'b0; // 'OKAY' response
end
else if (axi_rvalid && S_AXI_RREADY)
begin
// Read data is accepted by the master
axi_rvalid <= 1'b0;
end
end
end
// Implement memory mapped register select and read logic generation
// Slave register read enable is asserted when valid address is available
// and the slave is ready to accept the read address.
assign slv_reg_rden = axi_arready & S_AXI_ARVALID & ~axi_rvalid;
/*always @(*)
begin
// Address decoding for reading registers
case ( axi_araddr[ADDR_LSB+OPT_MEM_ADDR_BITS:ADDR_LSB] )
2'h0 : reg_data_out <= slv_reg0;
2'h1 : reg_data_out <= slv_reg1;
2'h2 : reg_data_out <= slv_reg2;
2'h3 : reg_data_out <= slv_reg3;
default : reg_data_out <= 0;
endcase
end
// Output register or memory read data
always @( posedge S_AXI_ACLK )
begin
if ( S_AXI_ARESETN == 1'b0 )
begin
axi_rdata <= 0;
end
else
begin
// When there is a valid read address (S_AXI_ARVALID) with
// acceptance of read address by the slave (axi_arready),
// output the read dada
if (slv_reg_rden)
begin
axi_rdata <= reg_data_out; // register read data
end
end
end */
// Add user logic here
assign wr_en = slv_reg_wren;
assign wr_addr = axi_awaddr;
assign wr_data = S_AXI_WDATA;
assign rd_en = slv_reg_rden;
assign rd_addr = axi_araddr;
assign S_AXI_RDATA = rd_data;
// User logic ends
endmodule
然后是顶层模块,记得例化也要加上 新定义的信号。
(2)ps_wr_rd_ctrl
module ps_wr_rd_ctrl(
input sys_clk,
input sys_rst_n,
// connect to module"axi_lite_slave"
input wr_en,
input [31:0] wr_data,
input [3:0] wr_addr,
input rd_en,
input [3:0] rd_addr,
output reg [31:0] rd_data,
input temp_sign,
input [6:0] temp_data_reg,
output sw_ctrl,
output set_en,
output [9:0] set_freq_step
);
reg sw_ctrl_reg;
reg [31:0] set_en_and_step_reg;
assign sw_ctrl = sw_ctrl_reg;
assign set_en = set_en_and_step_reg[0];
assign set_freq_step = set_en_and_step_reg[17:8];
// receive data form ps
always @(posedge sys_clk or negedge sys_rst_n) begin
if (!sys_rst_n) begin
sw_ctrl_reg <= 1'b0;
set_en_and_step_reg <= 'd0;
end
else if (wr_en) begin
case(wr_addr)
0 : sw_ctrl_reg <= wr_data[0];
4 : set_en_and_step_reg <= wr_data;
default : ;
endcase
end
else begin
sw_ctrl_reg <= sw_ctrl_reg;
set_en_and_step_reg <= 'd0;
end
end
// send data to ps
always @(posedge sys_clk or negedge sys_rst_n) begin
if (!sys_rst_n) begin
rd_data <= 'd0;
end
else if (rd_en) begin
case(rd_addr)
0 : rd_data[0] <= temp_sign;
4 : rd_data[6:0] <= temp_data_reg;
default : ;
endcase
end
else begin
rd_data <= 'd0;
end
end
endmodule
(3)breath_led
module breath_led(
input wire sys_clk,
input wire sys_rst_n,
input wire sw_ctrl, //呼吸灯开关控制信号,1亮 0灭
input wire set_en, //设置呼吸灯频率的设置使能信号,1设置有效 0无效
input [9:0] set_freq_step, //设置呼吸灯频率变化步长
output wire led
);
parameter START_FREQ_STEP = 10'd100; //设置频率步长初始值
reg [15:0] period_cnt; //周期计数器
reg [15:0] duty_cycle; //高电平占空比的计数器
reg [9:0] freq_step; //呼吸灯频率间隔步长
reg inc_dec_flag; //为1时表示占空比递减,为0时表示占空比递增
wire led_t;
assign led_t = (period_cnt <= duty_cycle) ? 1'b1 : 1'b0;
assign led = led_t & sw_ctrl;
//period_cnt:0-50_000
always@(posedge sys_clk or negedge sys_rst_n) begin
if((!sys_rst_n) || (!sw_ctrl))
period_cnt <= 16'b0;
else if(period_cnt == 16'd50_000)
period_cnt <= 16'b0;
else
period_cnt <= period_cnt + 1'b1;
end
//设置频率间隔freq_step(0-1000),通过输入信号set_freq_step和set_en控制
always@(posedge sys_clk or negedge sys_rst_n) begin
if(!sys_rst_n)
freq_step <= START_FREQ_STEP;
else if(set_en) begin
if(set_freq_step == 1'b0)
freq_step <=10'd1;
else begin
if(set_freq_step >= 10'd1000)
freq_step <= 10'd1000;
else
freq_step <= set_freq_step;
end
end
end
//调节高电平占空比的计数值duty_cycle
always@(posedge sys_clk or negedge sys_rst_n) begin
if((!sys_rst_n) || (!sw_ctrl)) begin
duty_cycle <= 16'd0;
inc_dec_flag <= 1'b0;
end
//每次计数完一个周期(0-50_000),就调节占空比计数值duty_cycle
else if(period_cnt == 16'd50_000) begin
if(inc_dec_flag) begin //占空比递减
if(duty_cycle == 16'd0)
inc_dec_flag <= 1'b0;
else if(duty_cycle < freq_step)
duty_cycle <= 16'd0;
else
duty_cycle <= duty_cycle - freq_step;
end
else begin //占空比递增(也正是默认状态)
if(duty_cycle >= 16'd50_000)
inc_dec_flag <= 1'b1;
else
duty_cycle <= duty_cycle + freq_step;
end
end
else //duty_cycle未计完一个周期,占空比保持不变
duty_cycle <= duty_cycle;
end
endmodule
(4)key_NumGen
module key_NumGen(
input clk,
input rst_n,
input Key,
output reg temp_sign, //表示按下的状态
output reg [6:0] temp_data_reg //数据
);
always@(posedge clk or negedge rst_n) begin
if(!rst_n) begin
temp_sign <= 1'b0;
temp_data_reg <= 7'b0;
end
else begin
if(Key) begin //未按下
temp_sign <=1'b0;
temp_data_reg <= 7'b1111111;
end
else begin //按下
temp_sign <= 1'b1;
temp_data_reg <= 7'b1000001;
end
end
end
endmodule
(5)ZYNQ_ultrascale+MPSoc
也就是PS端的ARM,进行的配置主要有:
2、搭建Vitis-sdk工程
PS端的C语言实现比较容易,有一点需要注意的是使用Xil_In/Out函数时的地址要和Vivado里分配的地址相匹配。代码就简单贴出来:
3、实验结果
打开串口终端,结果表明:当KEY没被按下时会收到data=127,当KEY被按下时data=65。PS读取PL数据成功。
此外,板子上的LED呼吸灯闪烁,说明PS向PL写入数据成功。(忘记拍照片了)
参考:FPGA:基于AXI4_Lite的PS与PL交互项目、[3-4]程序设计、ZYNQ PS与PL交互专题_哔哩哔哩_bilibili