POJ 3164 Command Network 最小树形图模板题

探讨在战争条件下如何快速建立一个单向通信的指挥网络,确保命令能够从总部传达至每一个节点,同时考虑到实际情况限制,寻求最短总连线长度。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >


Command Network
Time Limit: 1000MS Memory Limit: 131072K
Total Submissions: 10899 Accepted: 3184

Description

After a long lasting war on words, a war on arms finally breaks out between littleken’s and KnuthOcean’s kingdoms. A sudden and violent assault by KnuthOcean’s force has rendered a total failure of littleken’s command network. A provisional network must be built immediately. littleken orders snoopy to take charge of the project.

With the situation studied to every detail, snoopy believes that the most urgent point is to enable littenken’s commands to reach every disconnected node in the destroyed network and decides on a plan to build a unidirectional communication network. The nodes are distributed on a plane. If littleken’s commands are to be able to be delivered directly from a node A to another node B, a wire will have to be built along the straight line segment connecting the two nodes. Since it’s in wartime, not between all pairs of nodes can wires be built. snoopy wants the plan to require the shortest total length of wires so that the construction can be done very soon.

Input

The input contains several test cases. Each test case starts with a line containing two integer N (N ≤ 100), the number of nodes in the destroyed network, and M (M ≤ 104), the number of pairs of nodes between which a wire can be built. The next N lines each contain an ordered pair xi and yi, giving the Cartesian coordinates of the nodes. Then follow M lines each containing two integers i and j between 1 and N (inclusive) meaning a wire can be built between node i and node j for unidirectional command delivery from the former to the latter. littleken’s headquarter is always located at node 1. Process to end of file.

Output

For each test case, output exactly one line containing the shortest total length of wires to two digits past the decimal point. In the cases that such a network does not exist, just output ‘poor snoopy’.

Sample Input

4 6
0 6
4 6
0 0
7 20
1 2
1 3
2 3
3 4
3 1
3 2
4 3
0 0
1 0
0 1
1 2
1 3
4 1
2 3

Sample Output

31.19
poor snoopy

Source


题意是说部队之间电缆传达信息,传达方向是单向的,现在给出部队位置和可以连接的部队,问最少需要多长的电缆。
最基础的最小树形图问题。

#include<stdio.h>
#include<string.h>
#include<math.h>
#define M 107
#define inf 0x3f3f3f
using namespace std;
int pre[M],vis[M],id[M];
double in[M];
int n,m;

struct Node
{
    int u,v;
    double cost;
}E[M*M+5];

struct point
{
    double x,y;
}p[M];

double dis(point a,point b)
{
    return sqrt((a.x-b.x)*(a.x-b.x)+(a.y-b.y)*(a.y-b.y));
}

double direct_mst(int root,int nv,int ne)
{
    double ret=0;
    while(true)
    {
        //找最小入边
        for(int i=0;i<nv;i++)
            in[i]=inf;
        for(int i=0;i<ne;i++)
        {
            int u=E[i].u;
            int v=E[i].v;
            if(E[i].cost<in[v]&&u!=v)
            {
                pre[v]=u;
                in[v]=E[i].cost;
            }
        }
        for(int i=0;i<nv;i++)
        {
            if(i==root)continue;
            if(in[i]==inf)return -1;
        }
        //找环
        int cntnode=0;
        memset(id,-1,sizeof(id));
        memset(vis,-1,sizeof(vis));
        in[root]=0;
        for(int i=0;i<nv;i++)//标记每个环
        {
            ret+=in[i];
            int v=i;
            while(vis[v]!=i&&id[v]==-1&&v!=root)
            {
                vis[v]=i;
                v=pre[v];
            }
            if(v!=root&&id[v]==-1)
            {
                for(int u=pre[v];u!=v;u=pre[u])
                {
                    id[u]=cntnode;
                }
                id[v]=cntnode++;
            }
        }
        if(cntnode==0)break;//无环
        for(int i=0;i<nv;i++)
            if(id[i]==-1)
                id[i]=cntnode++;
        //缩点,重新标记
        for(int i=0;i<ne;i++)
        {
            int v=E[i].v;
            E[i].u=id[E[i].u];
            E[i].v=id[E[i].v];
            if(E[i].u!=E[i].v)
            {
                E[i].cost-=in[v];
            }
        }
        nv=cntnode;
        root=id[root];
    }
    return ret;
}

int main()
{
    while(scanf("%d%d",&n,&m)!=EOF)
    {
        for(int i=0;i<n;i++)
            scanf("%lf%lf",&p[i].x,&p[i].y);
        for(int i=0;i<m;i++)
        {
            scanf("%d%d",&E[i].u,&E[i].v);
            E[i].u--;
            E[i].v--;
            if(E[i].u!=E[i].v)
                E[i].cost=dis(p[E[i].u],p[E[i].v]);
            else
                E[i].cost=inf;
        }
        double ans=direct_mst(0,n,m);
        if(ans==-1)
            printf("poor snoopy\n");
        else
            printf("%.2f\n",ans);
    }
    return 0;
}


资源下载链接为: https://pan.quark.cn/s/22ca96b7bd39 在当今的软件开发领域,自动化构建与发布是提升开发效率和项目质量的关键环节。Jenkins Pipeline作为一种强大的自动化工具,能够有效助力Java项目的快速构建、测试及部署。本文将详细介绍如何利用Jenkins Pipeline实现Java项目的自动化构建与发布。 Jenkins Pipeline简介 Jenkins Pipeline是运行在Jenkins上的一套工作流框架,它将原本分散在单个或多个节点上独立运行的任务串联起来,实现复杂流程的编排与可视化。它是Jenkins 2.X的核心特性之一,推动了Jenkins从持续集成(CI)向持续交付(CD)及DevOps的转变。 创建Pipeline项目 要使用Jenkins Pipeline自动化构建发布Java项目,首先需要创建Pipeline项目。具体步骤如下: 登录Jenkins,点击“新建项”,选择“Pipeline”。 输入项目名称和描述,点击“确定”。 在Pipeline脚本中定义项目字典、发版脚本和预发布脚本。 编写Pipeline脚本 Pipeline脚本是Jenkins Pipeline的核心,用于定义自动化构建和发布的流程。以下是一个简单的Pipeline脚本示例: 在上述脚本中,定义了四个阶段:Checkout、Build、Push package和Deploy/Rollback。每个阶段都可以根据实际需求进行配置和调整。 通过Jenkins Pipeline自动化构建发布Java项目,可以显著提升开发效率和项目质量。借助Pipeline,我们能够轻松实现自动化构建、测试和部署,从而提高项目的整体质量和可靠性。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值