点 :
// 计算几何模板
#include<bits/stdc++.h>
using namespace std;
const double eps = 1e-8;
const double inf = 1e20;
const double pi = acos( -1.0);
const int maxp = 1010;
//Compares a double to zero
int sgn(double x)
{
if(fabs(x) < eps)return 0;
if(x < 0)return - 1;
else return 1;
}
//square of a double
inline double sqr(double x)
{
return x*x;
}
/*
* Point
* Point() − Empty constructor
* Point(double _x,double _y) − constructor
* input() − double input
* output() − %.2f output
* operator == − compares x and y
* operator < − compares first by x, then by y
* operator − − return new Point after subtracting
curresponging x and y
* operator ^ − cross product of 2d points
* operator * − dot product
* len() − gives length from origin
* len2() − gives square of length from origin
* distance(Point p) − gives distance from p
* operator + Point b − returns new Point after adding
curresponging x and y
* operator * double k − returns new Point after multiplieing x and
y by k
* operator / double k − returns new Point after divideing x and y
by k
* rad(Point a,Point b) − returns the angle of Point a and Point b
from this Point
* trunc(double r) − return Point that if truncated the
distance from center to r
* rotleft() − returns 90 degree ccw rotated point
* rotright() − returns 90 degree cw rotated point
* rotate(Point p,double angle) − returns Point after rotateing the
Point centering at p by angle radian ccw
*/
struct Point
{
double x,y;
Point() {}
Point(double _x,double _y)
{
x = _x;
y = _y;
}
void input()
{
scanf("%lf%lf",&x,&y);
}
void output()
{
printf("%.2f␣%.2f\n",x,y);
}
bool operator == (Point b)const
{
return sgn(x - b.x) == 0 && sgn(y - b.y) == 0;
}
bool operator < (Point b)const
{
return sgn(x - b.x)== 0?sgn(y - b.y)<0:x<b.x;
}
Point operator - (const Point &b)const
{
return Point(x - b.x,y - b.y);
}
//叉积
double operator ^(const Point &b)const
{
return x*b.y - y*b.x;
}
//点积
double operator *(const Point &b)const
{
return x*b.x + y*b.y;
}
//返回长度
double len()
{
return hypot(x,y);//库函数
}
//返回长度的平方
double len2()
{
return x*x + y*y;
}
//返回两点的距离
double distance(Point p)
{
return hypot(x - p.x,y - p.y);
}
Point operator +(const Point &b)const
{
return Point(x+b.x,y+b.y);
}
Point operator *(const double &k)const
{
return Point(x*k,y*k);
}
Point operator /(const double &k)const
{
return Point(x/k,y/k);
}
//计算 pa 和 pb 的夹角
//就是求这个点看 a,b 所成的夹角
//测试 LightOJ1203
double rad(Point a,Point b)
{
Point p = *this;
return fabs(atan2( fabs((a - p)^(b - p)),(a - p)*(b - p) ));
}
//化为长度为 r 的向量
Point trunc(double r)
{
double l = len();
if(!sgn(l))return *this;
r /= l;
return Point(x*r,y*r);
}
//逆时针旋转 90 度
Point rotleft()
{
return Point( - y,x);
}
//顺时针旋转 90 度
Point rotright()
{
return Point(y, - x);
}
//绕着 p 点逆时针旋转 angle
Point rotate(Point p,double angle)
{
Point v = (*this) - p;
double c = cos(angle), s = sin(angle);
return Point(p.x + v.x*c - v.y*s,p.y + v.x*s + v.y*c);
}
};
边:
// 计算几何模板
#include<bits/stdc++.h>
using namespace std;
const double eps = 1e-8;
const double inf = 1e20;
const double pi = acos( -1.0);
const int maxp = 1010;
//Compares a double to zero
int sgn(double x)
{
if(fabs(x) < eps)return 0;
if(x < 0)return - 1;
else return 1;
}
//square of a double
inline double sqr(double x)
{
return x*x;
}
/*
* Point
* Point() − Empty constructor
* Point(double _x,double _y) − constructor
* input() − double input
* output() − %.2f output
* operator == − compares x and y
* operator < − compares first by x, then by y
* operator − − return new Point after subtracting
curresponging x and y
* operator ^ − cross product of 2d points
* operator * − dot product
* len() − gives length from origin
* len2() − gives square of length from origin
* distance(Point p) − gives distance from p
* operator + Point b − returns new Point after adding
curresponging x and y
* operator * double k − returns new Point after multiplieing x and
y by k
* operator / double k − returns new Point after divideing x and y
by k
* rad(Point a,Point b) − returns the angle of Point a and Point b
from this Point
* trunc(double r) − return Point that if truncated the
distance from center to r
* rotleft() − returns 90 degree ccw rotated point
* rotright() − returns 90 degree cw rotated point
* rotate(Point p,double angle) − returns Point after rotateing the
Point centering at p by angle radian ccw
*/
struct Point
{
double x,y;
Point() {}
Point(double _x,double _y)
{
x = _x;
y = _y;
}
void input()
{
scanf("%lf%lf",&x,&y);
}
void output()
{
printf("%.2f␣%.2f\n",x,y);
}
bool operator == (Point b)const
{
return sgn(x - b.x) == 0 && sgn(y - b.y) == 0;
}
bool operator < (Point b)const
{
return sgn(x - b.x)== 0?sgn(y - b.y)<0:x<b.x;
}
Point operator - (const Point &b)const
{
return Point(x - b.x,y - b.y);
}
//叉积
double operator ^(const Point &b)const
{
return x*b.y - y*b.x;
}
//点积
double operator *(const Point &b)const
{
return x*b.x + y*b.y;
}
//返回长度
double len()
{
return hypot(x,y);//库函数
}
//返回长度的平方
double len2()
{
return x*x + y*y;
}
//返回两点的距离
double distance(Point p)
{
return hypot(x - p.x,y - p.y);
}
Point operator +(const Point &b)const
{
return Point(x+b.x,y+b.y);
}
Point operator *(const double &k)const
{
return Point(x*k,y*k);
}
Point operator /(const double &k)const
{
return Point(x/k,y/k);
}
//计算 pa 和 pb 的夹角
//就是求这个点看 a,b 所成的夹角
//测试 LightOJ1203
double rad(Point a,Point b)
{
Point p = *this;
return fabs(atan2( fabs((a - p)^(b - p)),(a - p)*(b - p) ));
}
//化为长度为 r 的向量
Point trunc(double r)
{
double l = len();
if(!sgn(l))return *this;
r /= l;
return Point(x*r,y*r);
}
//逆时针旋转 90 度
Point rotleft()
{
return Point( - y,x);
}
//顺时针旋转 90 度
Point rotright()
{
return Point(y, - x);
}
//绕着 p 点逆时针旋转 angle
Point rotate(Point p,double angle)
{
Point v = (*this) - p;
double c = cos(angle), s = sin(angle);
return Point(p.x + v.x*c - v.y*s,p.y + v.x*s + v.y*c);
}
};
struct Line
{
Point s,e;
Line() {}
Line(Point _s,Point _e)
{
s = _s;
e = _e;
}
bool operator ==(Line v)
{
return (s == v.s)&&(e == v.e);
}
//根据一个点和倾斜角 angle 确定直线,0<=angle<pi
Line(Point p,double angle)
{
s = p;
if(sgn(angle - pi/2) == 0)
{
e = (s + Point(0,1));
}
else
{
e = (s + Point(1,tan(angle)));
}
}
//ax+by+c=0
Line(double a,double b,double c)
{
if(sgn(a) == 0)
{
s = Point(0, - c/b);
e = Point(1, - c/b);
}
else if(sgn(b) == 0)
{
s = Point( - c/a,0);
e = Point( - c/a,1);
}
else
{
s = Point(0, - c/b);
e = Point(1,( - c -a)/b);
}
}
void input()
{
s.input();
e.input();
}
void adjust()
{
if(e < s)swap(s,e);
}
//求线段长度
double length()
{
return s.distance(e);
}
//返回直线倾斜角 0<=angle<pi
double angle()
{
double k = atan2(e.y -s.y,e.x - s.x);
if(sgn(k) < 0)k += pi;
if(sgn(k-pi)==0)k -= pi;
return k;
}
//点和直线关系
//1 在左侧
//2 在右侧
//3 在直线上
int relation(Point p)
{
int c = sgn((p - s)^(e - s));
if(c < 0)return 1;
else if(c > 0)return 2;
else return 3;
}
// 点在线段上的判断
bool pointonseg(Point p)
{
return sgn((p - s)^(e - s)) == 0 && sgn((p - s)*(p -e)) <= 0;
}
//两向量平行 (对应直线平行或重合)
bool parallel(Line v)
{
return sgn((e - s)^(v.e - v.s)) == 0;
}
//两线段相交判断
//2 规范相交
//1 非规范相交
//0 不相交
int segcrossseg(Line v)
{
int d1 = sgn((e - s)^(v.s -s));
int d2 = sgn((e - s)^(v.e - s));
int d3 = sgn((v.e -v.s)^(s - v.s));
int d4 = sgn((v.e - v.s)^(e -v.s));
if( (d1^d2)== - 2 && (d3^d4)== -2 )return 2;
return (d1==0 && sgn((v.s - s)*(v.s -e))<=0) ||
(d2==0 && sgn((v.e - s)*(v.e - e))<=0) ||
(d3==0 && sgn((s - v.s)*(s - v.e))<=0) ||
(d4==0 && sgn((e - v.s)*(e - v.e))<=0);
}
//直线和线段相交判断
//-*this line -v seg
//2 规范相交
//1 非规范相交
//0 不相交
int linecrossseg(Line v)
{
int d1 = sgn((e - s)^(v.s - s));
int d2 = sgn((e - s)^(v.e - s));
if((d1^d2)== -2) return 2;
return (d1==0||d2==0);
}
//两直线关系
//0 平行
//1 重合
//2 相交
int linecrossline(Line v)
{
if((*this).parallel(v))
return v.relation(s)==3;
return 2;
}
//求两直线的交点
//要保证两直线不平行或重合
Point crosspoint(Line v)
{
double a1 = (v.e - v.s)^(s - v.s);
double a2 = (v.e - v.s)^(e -v.s);
return Point((s.x*a2 -e.x*a1)/(a2 - a1),(s.y*a2 - e.y*a1)/(a2 - a1
));
}
//点到直线的距离
double dispointtoline(Point p)
{
return fabs((p - s)^(e -s))/length();
}
//点到线段的距离
double dispointtoseg(Point p)
{
if(sgn((p -s)*(e - s))<0 || sgn((p - e)*(s - e))<0)
return min(p.distance(s),p.distance(e));
return dispointtoline(p);
}
//返回线段到线段的距离
//前提是两线段不相交,相交距离就是 0 了
double dissegtoseg(Line v)
{
return min(min(dispointtoseg(v.s),dispointtoseg(v.e)),min(v
.dispointtoseg(s),v.dispointtoseg(e)));
}
//返回点 p 在直线上的投影
Point lineprog(Point p)
{
return s + ( ((e - s)*((e - s)*(p - s)))/((e - s).len2()) );
}
//返回点 p 关于直线的对称点
Point symmetrypoint(Point p)
{
Point q = lineprog(p);
return Point(2*q.x - p.x,2*q.y -p.y);
}
};
圆:
//圆
struct circle
{
Point p;//圆心
double r;//半径
circle() {}
circle(Point _p,double _r)
{
p = _p;
r = _r;
}
circle(double x,double y,double _r)
{
p = Point(x,y);
r = _r;
}
//三角形的外接圆
//需要 Point 的 + / rotate() 以及 Line 的 crosspoint()
//利用两条边的中垂线得到圆心
//测试:UVA12304
circle(Point a,Point b,Point c)
{
Line u = Line((a+b)/2,((a+b)/2)+((b - a).rotleft()));
Line v = Line((b+c)/2,((b+c)/2)+((c - b).rotleft()));
p = u.crosspoint(v);
r = p.distance(a);
}
//三角形的内切圆
//参数 bool t 没有作用,只是为了和上面外接圆函数区别
//测试:UVA12304
circle(Point a,Point b,Point c,bool t)
{
Line u,v;
double m = atan2(b.y -a.y,b.x - a.x), n = atan2(c.y - a.y,c.x - a.x);
u.s = a;
u.e = u.s + Point(cos((n+m)/2),sin((n+m)/2));
v.s = b;
m = atan2(a.y - b.y,a.x - b.x), n = atan2(c.y - b.y,c.x - b.x);
v.e = v.s + Point(cos((n+m)/2),sin((n+m)/2));
p = u.crosspoint(v);
r = Line(a,b).dispointtoseg(p);
}
//输入
void input()
{
p.input();
scanf("%lf",&r);
}
//输出
void output()
{
printf("%.2lf␣%.2lf␣%.2lf\n",p.x,p.y,r);
}
bool operator == (circle v)
{
return (p==v.p) && sgn(r - v.r)==0;
}
bool operator < (circle v)const
{
return ((p<v.p)||((p==v.p)&&sgn(r - v.r)<0));
}
//面积
double area()
{
return pi*r*r;
}
//周长
double circumference()
{
return 2*pi*r;
}
//点和圆的关系
//0 圆外
//1 圆上
//2 圆内
int relation(Point b)
{
double dst = b.distance(p);
if(sgn(dst - r) < 0)return 2;
else if(sgn(dst - r)==0)return 1;
return 0;
}
//线段和圆的关系
//比较的是圆心到线段的距离和半径的关系
int relationseg(Line v)
{
double dst = v.dispointtoseg(p);
if(sgn(dst - r) < 0)return 2;
else if(sgn(dst -r) == 0)return 1;
return 0;
}
//直线和圆的关系
//比较的是圆心到直线的距离和半径的关系
int relationline(Line v)
{
double dst = v.dispointtoline(p);
if(sgn(dst - r) < 0)return 2;
else if(sgn(dst - r) == 0)return 1;
return 0;
}
//两圆的关系
//5 相离
//4 外切
//3 相交
//2 内切
//1 内含
//需要 Point 的 distance
//测试:UVA12304
int relationcircle(circle v)
{
double d = p.distance(v.p);
if(sgn(d -r - v.r) > 0)return 5;
if(sgn(d -r - v.r) == 0)return 4;
double l = fabs(r - v.r);
if(sgn(d - r - v.r)<0 && sgn(d - l)>0)return 3;
if(sgn(d - l)==0)return 2;
if(sgn(d - l)<0)return 1;
}
//求两个圆的交点,返回 0 表示没有交点,返回 1 是一个交点,2 是两个交点
//需要 relationcircle
//测试:UVA12304
int pointcrosscircle(circle v,Point &p1,Point &p2)
{
int rel = relationcircle(v);
if(rel == 1 || rel == 5)return 0;
double d = p.distance(v.p);
double l = (d*d+r*r -v.r*v.r)/(2*d);
double h = sqrt(r*r - l*l);
Point tmp = p + (v.p - p).trunc(l);
p1 = tmp + ((v.p - p).rotleft().trunc(h));
p2 = tmp + ((v.p - p).rotright().trunc(h));
if(rel == 2 || rel == 4)
return 1;
return 2;
}
//求直线和圆的交点,返回交点个数
int pointcrossline(Line v,Point &p1,Point &p2)
{
if(!(*this).relationline(v))return 0;
Point a = v.lineprog(p);
double d = v.dispointtoline(p);
d = sqrt(r*r - d*d);
if(sgn(d) == 0)
{
p1 = a;
p2 = a;
return 1;
}
p1 = a + (v.e - v.s).trunc(d);
p2 = a - (v.e - v.s).trunc(d);
return 2;
}
//得到过 a,b 两点,半径为 r1 的两个圆
int gercircle(Point a,Point b,double r1,circle &c1,circle &c2)
{
circle x(a,r1),y(b,r1);
int t = x.pointcrosscircle(y,c1.p,c2.p);
if(!t)return 0;
c1.r = c2.r = r;
return t;
}
//得到与直线 u 相切,过点 q, 半径为 r1 的圆
//测试:UVA12304
int getcircle(Line u,Point q,double r1,circle &c1,circle &c2)
{
double dis = u.dispointtoline(q);
if(sgn(dis -r1*2)>0)return 0;
if(sgn(dis) == 0)
{
c1.p = q + ((u.e - u.s).rotleft().trunc(r1));
c2.p = q + ((u.e - u.s).rotright().trunc(r1));
c1.r = c2.r = r1;
return 2;
}
Line u1 = Line((u.s + (u.e -u.s).rotleft().trunc(r1)),(u.e +(u.e - u.s).rotleft().trunc(r1)));
Line u2 = Line((u.s + (u.e - u.s).rotright().trunc(r1)),(u.e+ (u.e - u.s).rotright().trunc(r1)));
circle cc = circle(q,r1);
Point p1,p2;
if(!cc.pointcrossline(u1,p1,p2))cc.pointcrossline(u2,p1,p2);
c1 = circle(p1,r1);
if(p1 == p2)
{
c2 = c1;
return 1;
}
c2 = circle(p2,r1);
return 2;
}
//同时与直线 u,v 相切,半径为 r1 的圆
//测试:UVA12304
int getcircle(Line u,Line v,double r1,circle &c1,circle &c2,circle &c3,circle &c4)
{
if(u.parallel(v))return 0;//两直线平行
Line u1 = Line(u.s + (u.e - u.s).rotleft().trunc(r1),u.e + (u.e -u.s).rotleft().trunc(r1));
Line u2 = Line(u.s + (u.e - u.s).rotright().trunc(r1),u.e + (u.e - u.s).rotright().trunc(r1));
Line v1 = Line(v.s + (v.e - v.s).rotleft().trunc(r1),v.e + (v.e - v.s).rotleft().trunc(r1));
Line v2 = Line(v.s + (v.e - v.s).rotright().trunc(r1),v.e + (v.e - v.s).rotright().trunc(r1));
c1.r = c2.r = c3.r = c4.r = r1;
c1.p = u1.crosspoint(v1);
c2.p = u1.crosspoint(v2);
c3.p = u2.crosspoint(v1);
c4.p = u2.crosspoint(v2);
return 4;
}
//同时与不相交圆 cx,cy 相切,半径为 r1 的圆
//测试:UVA12304
int getcircle(circle cx,circle cy,double r1,circle &c1,circle &c2)
{
circle x(cx.p,r1+cx.r),y(cy.p,r1+cy.r);
int t = x.pointcrosscircle(y,c1.p,c2.p);
if(!t)return 0;
c1.r = c2.r = r1;
return t;
}
//过一点作圆的切线 (先判断点和圆的关系)
//测试:UVA12304
int tangentline(Point q,Line &u,Line &v)
{
int x = relation(q);
if(x == 2)return 0;
if(x == 1)
{
u = Line(q,q + (q - p).rotleft());
v = u;
return 1;
}
double d = p.distance(q);
double l = r*r/d;
double h = sqrt(r*r - l*l);
u = Line(q,p + ((q -p).trunc(l) + (q - p).rotleft().trunc(h)))
;
v = Line(q,p + ((q - p).trunc(l) + (q - p).rotright().trunc(h))
);
return 2;
}
//求两圆相交的面积
double areacircle(circle v)
{
int rel = relationcircle(v);
if(rel >= 4)return 0.0;
if(rel <= 2)return min(area(),v.area());
double d = p.distance(v.p);
double hf = (r+v.r+d)/2.0;
double ss = 2*sqrt(hf*(hf - r)*(hf - v.r)*(hf - d));
double a1 = acos((r*r+d*d - v.r*v.r)/(2.0*r*d));
a1 = a1*r*r;
double a2 = acos((v.r*v.r+d*d - r*r)/(2.0*v.r*d));
a2 = a2*v.r*v.r;
return a1+a2 - ss;
}
//求圆和三角形 pab 的相交面积
//测试:POJ3675 HDU3982 HDU2892
double areatriangle(Point a,Point b)
{
if(sgn((p - a)^(p - b)) == 0)return 0.0;
Point q[5];
int len = 0;
q[len++] = a;
Line l(a,b);
Point p1,p2;
if(pointcrossline(l,q[1],q[2])==2)
{
if(sgn((a - q[1])*(b - q[1]))<0)q[len++] = q[1];
if(sgn((a -q[2])*(b - q[2]))<0)q[len++] = q[2];
}
q[len++] = b;
if(len == 4 && sgn((q[0] - q[1])*(q[2] - q[1]))>0)swap(q[1],q[2]);
double res = 0;
for(int i = 0; i < len - 1; i++)
{
if(relation(q[i])==0||relation(q[i+1])==0)
{
double arg = p.rad(q[i],q[i+1]);
res += r*r*arg/2.0;
}
else
{
res += fabs((q[i] - p)^(q[i+1] - p))/2.0;
}
}
return res;
}
};