题目链接
题意
给你 n n n个数,每个数表示 1 2 a i \frac{1}{2^{a_i}} 2ai1,要你把这 n n n个数分为两堆,使得每堆的和都大于等于 1 2 \frac{1}{2} 21。
思路
首先我们假设第一堆的下标为
x
1
,
x
2
…
,
x
n
x_1,x_2\dots,x_n
x1,x2…,xn,且
2
a
x
1
≤
2
a
x
2
≤
⋯
≤
2
a
x
n
2^{a_{x_1}}\leq 2^{a_{x_2}}\leq\dots\leq 2^{a_{x_n}}
2ax1≤2ax2≤⋯≤2axn,则:
∑
i
=
1
n
1
2
a
x
i
=
∑
i
=
1
n
2
a
x
n
−
a
x
i
2
a
x
n
(通分)
\begin{aligned} &\sum\limits_{i=1}^{n}\frac{1}{2^{a_{x_i}}}&\\ =&\sum\limits_{i=1}^{n}\frac{2^{a_{x_n}-a_{x_i}}}{2^{a_{x_n}}}\text{(通分)}& \end{aligned}
=i=1∑n2axi1i=1∑n2axn2axn−axi(通分)
我们知道
2
2
2个
2
x
2^x
2x构成一个
2
x
+
1
2^{x+1}
2x+1,因此我们确定每一堆分母的最大值后按照
2
a
x
i
2^{a_{x_i}}
2axi从小到大来凑
2
a
x
n
−
1
2^{a_{x_n}-1}
2axn−1。
注意,一旦相邻两个数的大小差值大于等于
17
17
17就直接不用取输出
N
O
NO
NO,因为
2
17
≥
1
0
5
2^{17}\geq 10^5
217≥105,后面不管怎么凑都是不可能凑出我们所需要的数的。
代码实现如下
#include <set>
#include <map>
#include <deque>
#include <queue>
#include <stack>
#include <cmath>
#include <ctime>
#include <bitset>
#include <cstdio>
#include <string>
#include <vector>
#include <cstdlib>
#include <cstring>
#include <cassert>
#include <iostream>
#include <algorithm>
#include <unordered_map>
using namespace std;
typedef long long LL;
typedef pair<LL, LL> pLL;
typedef pair<LL, int> pLi;
typedef pair<int, LL> pil;;
typedef pair<int, int> pii;
typedef unsigned long long uLL;
#define lson rt<<1
#define rson rt<<1|1
#define lowbit(x) x&(-x)
#define name2str(name) (#name)
#define bug printf("*********\n")
#define debug(x) cout<<#x"=["<<x<<"]" <<endl
#define FIN freopen("D://Code//in.txt","r",stdin)
#define IO ios::sync_with_stdio(false),cin.tie(0)
const double eps = 1e-8;
const int mod = 1e9 + 7;
const int maxn = 1e5 + 7;
const double pi = acos(-1);
const int inf = 0x3f3f3f3f;
const LL INF = 0x3f3f3f3f3f3f3f3fLL;
int t, n;
int vis[maxn];
struct node {
int val, id;
bool operator < (const node& x) const {
return val < x.val;
}
}a[maxn];
int main() {
#ifndef ONLINE_JUDGE
FIN;
#endif // ONLINE_JUDGE
scanf("%d", &t);
int icase = 0;
while(t--) {
scanf("%d", &n);
for(int i = 1; i <= n; ++i) {
scanf("%d", &a[i].val);
a[i].id = i;
vis[i] = 0;
}
printf("Case %d: ", ++icase);
sort(a + 1, a + n + 1);
LL nw;
if(a[1].val == 1) {
vis[a[1].id] = 1;
} else {
nw = a[1].val - 1;
if(nw >= 17) {
printf("NO\n");
continue;
}
nw = (1<<nw) - 1;
vis[a[1].id] = 1;
for(int i = 2; i <= n; ++i) {
if(nw == 0) break;
if(a[i].val == a[i-1].val) --nw, vis[a[i].id] = 1;
else {
if(a[i].val - a[i-1].val >= 17) {
break;
}
nw = nw * (1<<(a[i].val - a[i-1].val)) - 1;
if(nw > n - i) break;
vis[a[i].id] = 1;
}
}
if(nw != 0) {
printf("NO\n");
continue;
}
}
int idx = -1;
for(int i = 1; i <= n; ++i) {
if(!vis[a[i].id]) {
idx = i;
break;
}
}
if(idx == -1) {
printf("NO\n");
continue;
}
if(a[idx].val == 1) {
printf("YES\n");
for(int i = 1; i <= n; ++i) {
printf("%d", vis[i]);
}
printf("\n");
} else {
nw = a[idx].val - 1;
if(nw >= 17) {
printf("NO\n");
continue;
}
nw = (1<<nw) - 1;
for(int i = idx + 1; i <= n; ++i) {
if(nw == 0) break;
if(vis[a[i].id]) continue;
if(a[i].val == a[i-1].val) --nw;
else {
if(a[i].val - a[i-1].val >= 17) {
break;
}
nw = nw * (1<<(a[i].val - a[i-1].val)) - 1;
if(nw > n - i) break;
}
}
if(nw != 0) {
printf("NO\n");
continue;
}
printf("YES\n");
for(int i = 1; i <= n; ++i) {
printf("%d", vis[i]);
}
printf("\n");
}
}
return 0;
}