AttributeError: 'SupervisedDataSet' object has no attribute '_convertToOneOfMany'

本文解决了使用PyBrain构建神经网络时出现的错误,详细介绍了如何处理由splitWithProportion方法导致的数据集类型变化问题。

使用pybrain构造神经网络,在执行官网代码时出错:

means = [(-1,0),(2,4),(3,1)]
cov = [diag([1,1]), diag([0.5,1.2]), diag([1.5,0.7])]
alldata = ClassificationDataSet(2, 1, nb_classes=3)
for n in xrange(400):
    for klass in range(3):
        input = multivariate_normal(means[klass],cov[klass])
        alldata.addSample(input, [klass])

tstdata, trndata = alldata.splitWithProportion( 0.25 )
trndata._convertToOneOfMany( )
tstdata._convertToOneOfMany( )


报错:

AttributeError: 'SupervisedDataSet' object has no attribute '_convertToOneOfMany'

在代码中alldata被定义成ClassificationDataSet,官网查看后发现这个类确实有_convertToOneOfMany()方法。

https://github.com/pybrain/pybrain/commit/2f02b8d9e4e9d6edbc135a355ab387048a00f1af中找到原因如下:

Now splitWithProporion uses numpy array indicies with numpy.random.permutation instead of for loop, before this change on large datasets this method was very slow, now its finish almost instant.

This commit breaks polymorphism: When called on an ClassificationDataSet (as shown in the tutorials) it no longer returns ClassificationDataSets but SupervisedDataSets.

执行

splitWithProporion后alldata返回的是SupervisedDataSets而不是ClassificationDataSet,而SupervisedDataSets没有_convertToOneOfMany方法。
 
解决办法:
http://stackoverflow.com/questions/27887936/attributeerror-using-pybrain-splitwithportion-object-type-changed/30869317#30869317
将上面代码改为:
tstdata_temp, trndata_temp = alldata.splitWithProportion(0.25)

tstdata = ClassificationDataSet(2, 1, nb_classes=3)
for n in xrange(0, tstdata_temp.getLength()):
    tstdata.addSample( tstdata_temp.getSample(n)[0], tstdata_temp.getSample(n)[1] )

trndata = ClassificationDataSet(2, 1, nb_classes=3)
for n in xrange(0, trndata_temp.getLength()):
    trndata.addSample( trndata_temp.getSample(n)[0], trndata_temp.getSample(n)[1] )


 

s
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值