HDU 2829 区间DP & 前缀和优化 & 四边形不等式优化

本文详细解析了HDU2829题目,采用区间动态规划的方法结合前缀和与四边形不等式优化策略,有效降低了算法的时间复杂度。介绍了如何通过前缀和快速计算区间的策略值,并利用四边形不等式进一步优化状态转移过程。

HDU 2829 区间DP & 前缀和优化 & 四边形不等式优化

n个节点n-1条线性边,炸掉M条边也就是分为m+1个区间 问你各个区间的总策略值最少的炸法 就题目本身而言,中规中矩的区间DP问题 d

p[i][j]表示前i个节点,分为j个区间的最优策略值 cost[i][j]为从i到j节点的策略值 所以dp[i][j] = min(dp[k-1][j-1] + cost[k][i]

但是复杂度太高了 可以优化的地方有: cost数组值得求取: 考虑到cost(i,j)=ΣAxAy (i≤x<y≤j) 而(Ai+...+Aj)^2=ΣAxAy (i≤x,y≤j) 于是可以得到: cost(i,j)=((Ai+...+Aj)^2-(Ai^2+...+Aj^2))/2 这是一个优化后线性n的等式 式子中的若干连续项的和与若干连续项的平方和 是可以用  前缀和   预先处理的, 所以设sum(i)=A1+...+Ai,sqsum(i)=A1^2+...+Ai^2, 将原式化为: cost(i,j)=((sum(j)-sum(i-1))^2-(sqsum(j)-sqsum(i-1)))/2

又因为是经典的区间DP问题所以可以用四边形不等式进行优化

设s[i][j]为dp[i][j]的前导状态dp[i][j] = dp[s[i][j][j-1] + cost[s[i][j]+1][j]之后我们枚举k的时候只要枚举s[i][j-1]<=k<=s[i+1][j],此时j必须从小到大遍历i必须从大到小。

#include <iostream>
#include <algorithm>
#include <string.h>
#include <cstdio>
#define inf (1 << 30)
using namespace std;
const int maxn = 1e3 + 1e2;
int dp[maxn][maxn];
int s[maxn][maxn];
//设s[i][j]为dp[i][j]的前导状态
//dp[i][j] = dp[s[i][j][j-1] + cost[s[i][j]+1][j]
//之后我们枚举k的时候只要枚举
//s[i][j-1]<=k<=s[i+1][j],此时j必须从小到大遍历
//i必须从大到小。
int cost[maxn][maxn];
int sum[maxn],powsum[maxn];
int a[maxn];
/*int get_cost(int l,int r)
{
    if(r < l)return 0;
    return ((sum[r] - sum[l-1]) * (sum[r] - sum[l-1]) - (powsum[r] - powsum[l-1])) / 2;
}*/
void init()
{
    memset(sum,0,sizeof(sum));
    memset(powsum,0,sizeof(powsum));
    memset(cost,0,sizeof(cost));
}
int main()
{
    int n,m;
    while(~scanf("%d%d",&n,&m))
    {

        if(n == m && n == 0)break;
        init();
        //m++;
        //前缀和处理
        for(int i = 1;i <= n;i++)
        {
            scanf("%d",&a[i]);
            sum[i] = sum[i-1] + a[i];
            powsum[i] = powsum[i-1] + a[i] * a[i];
        }

        /*for(int i = 1;i <= n;i++)
            for(int j = 1;j <= n;j++)
        {
            if(j < i) cost[i][j] = 0;
            else cost[i][j] = cost[i][j-1] + a[j] * (sum[j-1] - sum[i-1]);
        }*/
        //特殊值预处理
        //这里没有m++但是0代表分一块
        for(int i = 0;i <= n;i++)
        {
            dp[i][0] = cost[1][i];
//            dp[i][0] = get_cost(1,i);
            s[i][0] = 0;
            s[n+1][i] = n;//外面的界限出界后的特殊处理
        }
        //区间DP & 四边形不等式
        for(int j = 1;j <= m;j++)//分几部分
        {
            for(int i = n;i >= 1;i--)//前n个节点
            {
                dp[i][j]  = inf;
                for(int k = s[i][j-1];k <= s[i+1][j];k++)
                {
                    if(dp[i][j] > dp[k][j-1] + get_cost(k+1,i))
                    {
                        dp[i][j] = dp[k][j-1] + get_cost(k+1,i);
                        s[i][j] = k;//确定上一个状态
                    }
                }
            }
        }
        printf("%d\n",dp[n][m]);
    }
    return 0;
}

 

### 回答1: hdu 2829 Lawrence 斜率优化dp 这道题是一道经典的斜率优化dp题目,需要用到单调队列的思想。 题目大意是给定一个序列a,求出一个序列b,使得b[i]表示a[1]~a[i]中的最小值,且满足b[i] = min{b[j] + (i-j)*k},其中k为给定的常数。 我们可以将上式拆开,得到b[i] = min{b[j] - j*k} + i*k,即b[i] = i*k + min{b[j] - j*k},这个式子就是斜率优化dp的形式。 我们可以用单调队列来维护min{b[j] - j*k},具体思路如下: 1. 首先将第一个元素加入队列中。 2. 从第二个元素开始,我们需要将当前元素加入队列中,并且需要维护队列的单调性。 3. 维护单调性的方法是,我们从队列的末尾开始,将队列中所有大于当前元素的元素弹出,直到队列为空或者队列中最后一个元素小于当前元素为止。 4. 弹出元素的同时,我们需要计算它们对应的斜率,即(b[j]-j*k)/(j-i),并将这些斜率当前元素的斜率比较,如果当前元素的斜率更小,则将当前元素加入队列中。 5. 最后队列中的第一个元素就是min{b[j] - j*k},我们将它加上i*k就得到了b[i]的值。 6. 重复以上步骤直到处理完所有元素。 具体实现可以参考下面的代码: ### 回答2: HDU 2829 Lawrence 斜率优化 DP 是一道经典的斜率优化 DP 题目,其思想是通过维护一个下凸包来优化 DP 算法。下面我们来具体分析一下这道题目。 首先,让我们看一下该题目的描述。题目给定一些木棒,要求我们将这些木棒割成一些给定长度,且要求每种长度的木棒的数量都是一样的,求最小的割枝次数。这是一个典型的背包问题,而且在此基础上还要求每种长度的木棒的数量相同,这就需要我们在状态设计上走一些弯路。 我们来看一下状态的定义。定义 $dp[i][j]$ 表示前 $i$ 个木棒中正好能割出 $j$ 根长度为 $c_i$ 的木棒的最小割枝次数。对于每个 $dp[i][j]$,我们可以分类讨论: 1. 不选当前的木棒,即 $dp[i][j]=dp[i-1][j]$; 2. 选当前的木棒,即 $dp[i][j-k]=dp[i-1][j-k]+k$,其中 $k$ 是 $j/c_i$ 的整数部分。 现在问题再次转化为我们需要在满足等量限制的情况下,求最小的割枝次数。可以看出,这是一个依赖于 $c_i$ 的限制。于是,我们可以通过斜率优化 DP 来解决这个问题。 我们来具体分析一下斜率优化 DP 算法的思路。我们首先来看一下动态规划的状态转移方程 $dp[i][j]=\min\{dp[i-1][k]+x_k(i,j)\}$。可以发现,$dp[i][j]$ 的最小值只 $dp[i-1][k]$ 和 $x_k(i,j)$ 有关。其中,$x_k(i,j)$ 表示斜率,其值为 $dp[i-1][k]-k\times c_i+j\times c_i$。 接下来,我们需要维护一个下凸包,并通过斜率进行优化。我们具体分析一下该过程。假设我们当前要计算 $dp[i][j]$。首先,我们需要找到当前点 $(i,j)$ 在凸包上的位置,即斜率最小值的位置。然后,我们根据该位置的斜率计算 $dp[i][j]$ 的值。接下来,我们需要将当前点 $(i,j)$ 加入到下凸包上。 我们在加入点的时候需要注意几点。首先,我们需要将凸包中所有斜率比当前点小的点移除,直到该点能够加入到凸包中为止。其次,我们需要判断该点是否能够加入到凸包中。如果不能加入到凸包中,则直接舍弃。最后,我们需要保证凸包中斜率是单调递增的,这就需要在加入新的点之后进行上一步操作。 以上就是该题目的解题思路。需要注意的是,斜率优化 DP 算法并不是万能的,其使用情况需要根据具体的问题情况来确定。同时,该算法中需要维护一个下凸包,可能会增加一些算法的复杂度,建议和常规 DP 算法进行对比,选择最优的算法进行解题。 ### 回答3: 斜率优化DP是一种动态规划优化算法,其主要思路是通过对状态转移方程进行变形,提高算法的时间复杂度。HDU2829 Lawrence问题可以用斜率优化DP解决。 首先,我们需要了解原问题的含义。问题描述如下:有$n$个人在数轴上,第$i$个人的位置为$A_i$,每个人可以携带一定大小的行李,第$i$个人的行李重量为$B_i$,但是每个人只能帮助没有他们重量大的人搬行李。若第$i$个人搬运了第$j$个人的行李,那么第$i$个人会累加$C_{i,j}=\left|A_i-A_j\right|\cdot B_j$的体力消耗。求$m$个人帮助每个人搬运行李的最小体力消耗。 我们可以通过斜率优化DP解决这个问题。记$f_i$为到前$i$个人的最小体力消耗,那么状态转移方程为: $$f_i=\min_{j&lt;i}\{f_j+abs(A_i-A_j)\cdot B_i\}$$ 如果直接使用该方程,时间复杂度为$O(n^2)$,如果$n=10^4$,则需要计算$10^8$次,运算时间极长。斜率优化DP通过一些数学推导将方程变形,将时间复杂度降低到$O(n)$,大大缩短了计算时间。 通过斜率优化DP的推导式子,我们可以得到转移方程为: $$f_i=\min_{j&lt;i}\{f_j+slope(j,i)\}$$ 其中,$slope(j,i)$表示直线$j-i$的斜率。我们可以通过如下方式来求解$slope(j,i)$: $$slope(j,i)=\frac{f_i-f_j}{A_i-A_j}-B_i-B_j$$ 如果$slope(j,i)\leq slope(j,k)$,那么$j$一定不是最优,可以直接舍去,降低计算时间。该算法的时间复杂度为$O(n)$。 综上所述,斜率优化DP是一种动态规划优化算法,可以大大缩短计算时间。在处理类似HDU2829 Lawrence问题的时候,斜率优化DP可以很好地解决问题。
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值