计算机专业也太惨了吧!“劝”你别学计算机

本文分享了计算机专业学生的真实体验,从介绍专业、课程挑战、日常维修到就业困境,揭示了学习过程的艰辛与收获。吴恩达新书《MachineLearningYearning》为学习者提供实用策略。

点击“开发者技术前线”,选择“星标🔝”

在看|星标|留言,  真爱

dfac5b675d0fe396c6b0c300080f37f5.png

来自:西二旗程序员指北

最近又到了开学季,

又一群懵懂的大学新生怀着憧憬走进了校园,

如果让学长学姐们用一个词给学弟学妹们形容自己的专业的话,

有的也许是“忙碌”,

有的也许是“充实”,

有的也许是“快乐”…

这个时候计算机专业的学长学姐们可能会流下热泪,

因为计算机专业,

实在是太太太太太“南”了!

首先,是介绍自己学院的时候——

d91ad92b5f13ee1bae54b4b96200c35a.png

其次,是学专业课的时候——

458dd5764e130a0f7097d48fe2d5020a.png

其他人的大学四年都是一把美容刀,

而计算机专业的四年是一把剃头刀——

f3708db1dfbe4501ac12bbb3c29381e2.png

自从学了计算机,

每次回家都会被邻居亲戚要求维修各种东西——

9bab558cc1769df55834ff7b0fc283cf.png

当别的学院学生在参加各种活动的时候,

计算机学院总是在——

0052cec8e3289441fa2d4e77d3cdcdd4.png

更难的大概是这个时候——

76da4ca8f88b9a5dcd707c9ca88c24f6.png

还有这个时候——

de206fe027c416ba84bc05ee97515652.png

但更难的可能是毕业找工作的时候——

be3d52535f0df2b0a3d0d2ade74c4217.png

不过俗话说,难走的都是上坡路,

真到毕业的时候,

你就知道计算机专业难有难的道理——

abe1d13e24ce40c304195a6306a9e2c1.png

学习推荐


吴恩达新书《Machine Learning Yearning》,附中文版PDF下载!图文并茂可能更适合你


   简介
免费电子书《Machine Learning Yearning》是吴恩达历时两年总结整理的一本机器学习实践经验宝典,它以较高的层次为我们介绍了许多在机器学习时代AI工程师应该掌握的技术策略。该书并不聚焦于具体的AI算法,而是为我们介绍了许多具有泛化性的如何让AI算法有效工作的技术。



这本书的重点并不是教你具体的机器学习算法,而是如何让机器学习算法有效工作。


   主要内容
部分内容如下:
  • 机器学习为什么需要策略?

  • 如何使用此书来帮助你的团队

  • 先修知识与符号说明

  • 规模驱动机器学习发展

  • 开发集和测试集的定义

  • 将大型开发集拆分为两个子集,专注其一

  • Eyeball 和 Blackbox 开发集该设置多大?

  • 小结:基础误差分析

  • 偏差和方差:误差的两大来源

  • 偏差和方差举例

  • 与最优错误率比较

  • 处理偏差和方差

  • 偏差和方差间的权衡

  • 减少可避免偏差的技术

  • 训练集误差分析

  • 减少方差的技术

  • 诊断偏差与方差:学习曲线

  • 绘制训练误差曲线

  • 流水线组件的选择:数据可用性

  • 流水线组件的选择:任务简单性

  • 建立超级英雄团队 - 让你的队友阅读这本书吧!

关注下面二维码

回复「MLY」即可获取

be2cff1910954df8d11f724b5c67052a.png

END

开发者技术前线 ,汇集技术前线快讯和关注行业趋势,大厂干货,是开发者经历和成长的优秀指南。

历史推荐

又一个国产自主知识产权操作系统发布!

2020年必学的 10 大算法

2020 年最具潜力 44 个顶级开源项目,涵盖 11 类 AI 学习框架、平台(值得收藏)

5款牛逼的 API 工具,经典收藏

d500f7bc7c1c7dec6587c2236a4920cb.png

62e0ac56b7a88da3e2eb206ab8c77f66.gif

5c424a4e2490c29a4b7c4cee8d5bc1e7.png

点个在看吧

ee32c028eb87281b511aa7d35e784039.gif

Table of Contents (draft) Why Machine Learning Strategy 4 ........................................................................................... How to use this book to help your team 6 ................................................................................ Prerequisites and Notation 7 .................................................................................................... Scale drives machine learning progress 8 ................................................................................ Your development and test sets 11 ............................................................................................ Your dev and test sets should come from the same distribution 13 ........................................ How large do the dev/test sets need to be? 15 .......................................................................... Establish a single-number evaluation metric for your team to optimize 16 ........................... Optimizing and satisficing metrics 18 ..................................................................................... Having a dev set and metric speeds up iterations 20 ............................................................... When to change dev/test sets and metrics 21 .......................................................................... Takeaways: Setting up development and test sets 23 .............................................................. Build your first system quickly, then iterate 25 ........................................................................ Error analysis: Look at dev set examples to evaluate ideas 26 ................................................ Evaluate multiple ideas in parallel during error analysis 28 ................................................... If you have a large dev set, split it into two subsets, only one of which you look at 30 ........... How big should the Eyeball and Blackbox dev sets be? 32 ...................................................... Takeaways: Basic error analysis 34 .......................................................................................... Bias and Variance: The two big sources of error 36 ................................................................. Examples of Bias and Variance 38 ............................................................................................ Comparing to the optimal error rate 39 ................................................................................... Addressing Bias and Variance 41 .............................................................................................. Bias vs. Variance tradeoff 42 ..................................................................................................... Techniques for reducing avoidable bias 43 .............................................................................. Techniques for reducing Variance 44 ....................................................................................... Error analysis on the training set 46 ........................................................................................ Diagnosing bias and variance: Learning curves 48 ................................................................. Plotting training error 50 .......................................................................................................... Interpreting learning curves: High bias 51 ............................................................................... Interpreting learning curves: Other cases 53 .......................................................................... Plotting learning curves 55 ....................................................................................................... Why we compare to human-level performance 58 .................................................................. How to define human-level performance 60 ........................................................................... Surpassing human-level performance 61 ................................................................................ Why train and test on different distributions 63 ...................................................................... Page!2 Machine Learning Yearning-Draft V0.5 Andrew NgWhether to use all your data 65 ................................................................................................ Whether to include inconsistent data 67 .................................................................................. Weighting data 68 .................................................................................................................... Generalizing from the training set to the dev set 69 ................................................................ Addressing Bias and Variance 71 ............................................................................................. Addressing data mismatch 72 ................................................................................................... Artificial data synthesis 73 ........................................................................................................ The Optimization Verification test 76 ...................................................................................... General form of Optimization Verification test 78 ................................................................... Reinforcement learning example 79 ......................................................................................... The rise of end-to-end learning 82 ........................................................................................... More end-to-end learning examples 84 .................................................................................. Pros and cons of end-to-end learning 86 ................................................................................ Learned sub-components 88 .................................................................................................... Directly learning rich outputs 89 .............................................................................................. Error Analysis by Parts 93 ....................................................................................................... Beyond supervised learning: What’s next? 94 ......................................................................... Building a superhero team - Get your teammates to read this 96 ........................................... Big picture 98 ............................................................................................................................ Credits 99
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值