Superpixel整理

基于梯度下降的方法(Gradient descent based algorithms):

1. Watershed,1991.

Luc Vincent and Pierre Soille. Watersheds in digital spaces: An ef?cient algorithm based on immersion simulations. IEEE Transactions on Pattern Analalysis and Machine Intelligence, 13(6):583–598, 1991.


2. Mean Shift, 2002.

D. Comaniciu and P. Meer. Mean shift: a robust approach toward featurespace analysis. IEEE Transactions on Pattern Analysis and MachineIntelligence, 24(5):603–619, May 2002.


3. Quick Shift, 2008

A. Vedaldi and S. Soatto. Quick shift and kernel methods for mode seeking. In European Conference on Computer Vision (ECCV), 2008.

Project Home Page: http://www.vlfeat.org/download.html


4. Turbopixel, 2009.

A. Levinshtein, A. Stere, K. Kutulakos, D. Fleet, S. Dickinson, and K. Siddiqi. Turbopixels: Fast superpixels using geometric ?ows. IEEETransactions on Pattern Analysis and Machine Intelligence (PAMI),2009.

Project Home Page: http://www.cs.toronto.edu/~babalex/


5. SLIC, 2010.

R. Achanta, A. Shaji, K. Smith, A. Lucchi, P. Fua, and S. Susstrunk , SLIC Superpixels, 2010.

Project Home Page: http://ivrg.epfl.ch/research/superpixels


6.SEEDS, 2012.

M. Van den Bergh, X. Boix, G. Roig, B. de Capitani, L. Van Gool.SEEDS: Superpixels Extracted via Energy-Driven Sampling, ECCV 2012.

Project Home Page:http://www.vision.ee.ethz.ch/~boxavier/seeds/


二:基于图论的方法(Graph-based algorithms):

1. Normalized cuts, 2000.

Jianbo Shi and Jitendra Malik. Normalized cuts and image segmentation. IEEE Transactions on Pattern Analysis and Machine Intelligence (PAMI), 22(8):888–905,  2000.

T. Cour, F. Benezit, and J. Shi. Spectral segmentation with multiscale graph decomposition. In IEEE Computer Vision and Pattern Recognition (CVPR) 2005, 2005.

Project Home Page: 

http://www.cis.upenn.edu/~jshi/software/

http://www.timotheecour.com/software/ncut/ncut.html


2. Graph-based segmentation, 2004.

Pedro Felzenszwalb and Daniel Huttenlocher. Ef?cient graph-basedimage segmentation. International Journal of Computer Vision (IJCV),59(2):167–181, September 2004.

Project Home Page: http://cs.brown.edu/~pff/segment/


3. Graph cuts method, 2008.

Alastair Moore, Simon Prince, Jonathan Warrell, Umar Mohammed, andGraham Jones. Superpixel Lattices. IEEE Computer Vision and PatternRecognition (CVPR), 2008.

Project Home Page: http://www.cs.sfu.ca/~mori/research/superpixels


4. GCa10 and GCb10, 2010.

O. Veksler, Y. Boykov, and P. Mehrani. Superpixels and supervoxels in an energy optimization framework. In European Conference on Computer Vision (ECCV), 2010.

Project Home Page: http://www.csd.uwo.ca/~olga/


5. Entropy Rate Superpixel Segmentation, 2011.

Ming-Yu Liu, Tuzel, O., Ramalingam, S. , Chellappa, R., Entropy Rate Superpixel Segmentation, CVPR,2011.

Project Home Page:http://www.umiacs.umd.edu/~mingyliu


6. Superpixels via Pseudo-Boolean Optimization, 2011.

Yuhang Zhang, Richard Hartley, John Mashford and Stewart Burn, Superpixels via Pseudo-Boolean Optimization, International Conference on Computer Vision (ICCV), 2011.

http://yuhang.rsise.anu.edu.au/yuhang/misc.html


本文来自:http://blog.youkuaiyun.com/anshan1984/article/details/8918167

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值