数据治理与大模型一体化实践

本文探讨了大模型如何降低技术门槛,通过训练技术如指令微调和数据增强提升效率,强调数据治理在效能建设中的核心作用。滴普科技的柏海峰分享了企业如何通过数据集平衡、不同数据类型的任务处理和产品体系设计来实现大模型的有效落地和成本优化。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

引言:

大模型落地到当前这个阶段,核心关注点还是领域大模型,而领域大模型落地的前提在于两点:需求端,对当前应用的降本增效以及新应用的探索;供给端,训练技术已经有较高的成熟度。

专家介绍:

图片

柏海峰   

滴普科技 Deepexi产品线总裁             

负责企业大模型产品的规划、技术架构设计和应用解决方案的全体系打造,承担公司基础产品核心竞争力及创新力的构建。拥有丰富的企业数字化转型咨询与实施和产品研发管理经验,曾任华为技术研发经理、微软中国顾问、IBM(GBS)咨询总监以及营销云SaaS产品创业经验,服务过中移动、华润、工商银行等多个世界500强企业。


降本增效方面,以机器学习团队的构成为例,滴普科技Deepexi产品线总裁柏海峰介绍道:“传统机器学习或者说小模型的技术落地,对人才的要求很高,但企业往往没有意识到这个问题。具体来说,一般需要构建一个综合性的团队即数据科学团队,团队中需要数据开发工程师、BI工程师、商业分析师、数据科学家、算法工程师等岗位,人力成本很高,除了互联网、金融行业的大型企业,传统企业或中小型企业很难组建这样的团队。”

人才要求高的原因在于,不同岗位的技能差异非常大,相关工具和技术栈也比较分散,比如在某个具体应用领域的AI模型也是采用不同的算法,数据处理层面的pipeline,很多时候自动化的实现也不够完善。总之,不同的钉子只能用不同的锤子,而每一把锤子都不便宜。

因此,尽管小模型对算力、数据要求没有那么高,但要调出好的效果,复杂度还是很高的。除了技术因素,在团队协作和业务适配方面,也还有很多难题。

“大模型带来的首要好处就是,它一下子把技术门槛拉低了,把整个技术栈从输入到输出的链条变得很短,原本需要很多人的数据科学团队,变成只需要一个人加多个Copilot就可以完成,这个人甚至可以是业务部门的,这是非常有想象力的。”

训练技术方面,大模型一般都是先进行self supervised learning,构建通用大模型,然后经过supervised fine-tuning训练,针对特定任务,构建领域大模型初版,最后通过RLHF训练,对齐人类价值,完成类似于人类学习成长的解题、实习、社会工作三步曲。

图片

其中后两步是大模型微调并构建领域大模型的主要步骤,可以把训练前回答问题很散漫的通用大模型Llama 2 13B,训练成专业性很强的chatbot——Llama 2 13B-chat。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值