ADP论文学习-最优跟踪控制问题

本文综述了使用ADP算法解决线性连续和离散时间系统中最优跟踪控制问题的研究进展,涵盖了强化学习、模型不确定性处理、稳定性分析以及分布式控制方法,展示了从理论到实践的发展趋势。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

本文记录ADP算法解决最优跟踪控制问题

文章中代码来源Frank L.Lewis

Reinforcement Q -learning for optimal tracking control of linear discrete-time systems with unknown dynamics✩,2014, Bahare Kiumarsi ,Frank L. Lewis , Hamidreza Modares ,Ali Karimpour ,Mohammad-Bagher Naghibi-Sistani

Linear Quadratic Tracking Control of Partially-Unknown Continuous-time Systems using Reinforcement Learning,2014, Hamidreza Modares, Frank L. Lewis, Fellow, IEEE

Model-Free Optimal Tracking Control via Critic-Only Q-Learning ,2016,Biao Luo, Member, IEEE, Derong Liu, Fellow, IEEE, Tingwen Huang, and Ding Wang, Member, IEEE

General value iteration based reinforcement learning for solving optimal tracking control problem of continuous–time affine nonlinear systems ,2017,Geyang Xiao, Huaguang Zhang , Yanhong Luo, Qiuxia Qu

Parallel Control for Optimal Tracking via Adaptive Dynamic Programming ,2020,Jingwei Lu, Qinglai Wei, Senior Member, IEEE, and Fei-Yue Wang, Fellow, IEEE

Event-Triggered ADP for Tracking Control of Partially Unknown Constrained Uncertain Systems,2022, Shan Xue, Biao Luo , Senior Member, IEEE, Derong Liu , Fellow, IEEE, and Ying Gao , Member, IEEE

A novel adaptive dynamic programming based on tracking error for nonlinear discrete-time systems✩,2021, Chun Li, Jinliang Ding, Frank L. Lewis, Tianyou Chai

Discounted Iterative Adaptive Critic Designs With Novel Stability Analysis for Tracking Control,2022, Mingming Ha, Ding Wang, Senior Member, IEEE, and Derong Liu, Fellow, IEEE

Distributed Optimal Tracking Control of Discrete-Time Multiagent Systems via Event-Triggered Reinforcement Learning,2022, Zhinan Peng ,RuiLuo , Jiangping Hu , Senior Member, IEEE,KaiboShi , Member, IEEE, and Bijoy Kumar Ghosh , Life Fellow, IEEE

Model-Free Q-Learning for the Tracking Problem of Linear Discrete-Time Systems,2024, Chun Li , Jinliang Ding , Senior Member, IEEE, Frank L. Lewis , Life Fellow, IEEE, and Tianyou Chai , Life Fellow, IEEE

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值