P4173
题目描述
题解
单模式串匹配问题,含通配符。
由于含通配符,所以不能用KMP解决。
设模式串AAA(长度为mmm)、文本串BBB(长度为nnn)
考虑定义单个字符匹配函数C(x,y)C(x,y)C(x,y)来解决,令通配符的值为000
C(x,y)=[A(x)−B(y)]2A(x)B(y)
C(x,y)=[A(x)-B(y)]^2A(x)B(y)
C(x,y)=[A(x)−B(y)]2A(x)B(y)
那么整个字符串完全匹配函数P(x)P(x)P(x)(表示在BBB串的xxx位置完成匹配)
P(x)=∑i=1m[A(i)−B(x−m+i)]A(i)B(x−m+i)
P(x)=\sum\limits_{i=1}^m[A(i)-B(x-m+i)]A(i)B(x-m+i)
P(x)=i=1∑m[A(i)−B(x−m+i)]A(i)B(x−m+i)
考虑翻转,令S(m−i)=A(i)S(m-i)=A(i)S(m−i)=A(i),那么
P(x)=∑i=1m[S(m−i)−B(x−m+i)]2S(m−i)B(x−m+i)=∑i=1mS(m−i)3B(x−m+i)−2∑i=1mS(m−i)2B(x−m+i)2+∑i=1mS(m−i)B(x−m+i)=∑i+j=xS(i)3B(j)−2∑i+j=xS(i)2B(j)2+∑i+j=xS(i)B(j)3
P(x)=\sum\limits_{i=1}^m[S(m-i)-B(x-m+i)]^2S(m-i)B(x-m+i)\\
=\sum\limits_{i=1}^mS(m-i)^3B(x-m+i)-2\sum\limits_{i=1}^mS(m-i)^2B(x-m+i)^2+\sum\limits_{i=1}^m S(m-i)B(x-m+i)\\
=\sum\limits_{i+j=x}S(i)^3B(j)-2\sum\limits_{i+j=x}S(i)^2B(j)^2+\sum\limits_{i+j=x}S(i)B(j)^3
P(x)=i=1∑m[S(m−i)−B(x−m+i)]2S(m−i)B(x−m+i)=i=1∑mS(m−i)3B(x−m+i)−2i=1∑mS(m−i)2B(x−m+i)2+i=1∑mS(m−i)B(x−m+i)=i+j=x∑S(i)3B(j)−2i+j=x∑S(i)2B(j)2+i+j=x∑S(i)B(j)3
于是套FFT即可
代码
#include<cmath>
#include<cstdio>
#include<climits>
#include<cstring>
#include<cstdlib>
#include<iostream>
#include<algorithm>
using namespace std;
int read(){
int f=1,re=0;char ch;
for(ch=getchar();!isdigit(ch)&&ch!='-';ch=getchar());
if(ch=='-'){f=-1,ch=getchar();}
for(;isdigit(ch);ch=getchar()) re=(re<<3)+(re<<1)+ch-'0';
return re*f;
}
const int M=2100009;
const double pi=acos(-1.0);
struct complex{
double x,y;
complex(double xx=0,double yy=0){x=xx,y=yy;}
friend inline complex operator+(complex a,complex b){return complex(a.x+b.x,a.y+b.y);}
friend inline complex operator-(complex a,complex b){return complex(a.x-b.x,a.y-b.y);}
friend inline complex operator*(complex a,complex b){return complex(a.x*b.x-a.y*b.y,a.x*b.y+a.y*b.x);}
friend inline complex operator/(complex a,double b){return complex(a.x/b,a.y/b);}
friend inline complex operator*(complex a,double b){return complex(a.x*b,a.y*b);}
}c[M],d[M],ans[M];
int n,m,r[M],l,lim=1,top,s[M],a[M],b[M];
char s1[M],s2[M];
void FFT(complex *A,int type){
for(int i=0;i<lim;i++) if(i<r[i]) swap(A[i],A[r[i]]);
for(int mid=1;mid<lim;mid<<=1){
complex W(cos(pi/mid),type*sin(pi/mid));
for(int R=mid<<1,j=0;j<lim;j+=R){
complex w(1,0);
for(int k=0;k<mid;k++,w=w*W){
complex x=A[j+k],y=w*A[j+k+mid];
A[j+k]=x+y;
A[j+mid+k]=x-y;
}
}
}if(type==-1) for(int i=0;i<lim;i++) A[i]=A[i]/(double)lim;
}
signed main(){
m=read(),n=read();
scanf("%s%s",s1,s2);
reverse(s1,s1+m);
for(int i=0;i<m;i++)
if(s1[i]!='*') a[i]=s1[i]-'a'+1;
for(int i=0;i<n;i++)
if(s2[i]!='*') b[i]=s2[i]-'a'+1;
while(lim<n+n) lim<<=1,l++;
for(int i=0;i<lim;i++) r[i]=(r[i>>1]>>1)|((i&1)<<(l-1));
for(int i=0;i<m;i++) c[i]=complex(a[i]*a[i]*a[i],0);
for(int i=0;i<n;i++) d[i]=complex(b[i],0);
FFT(c,1),FFT(d,1);
for(int i=0;i<lim;i++) ans[i]=ans[i]+c[i]*d[i];
for(int i=0;i<lim;i++) c[i]=d[i]=complex(0,0);
for(int i=0;i<m;i++) c[i]=complex(a[i]*a[i],0);
for(int i=0;i<n;i++) d[i]=complex(b[i]*b[i],0);
FFT(c,1),FFT(d,1);
for(int i=0;i<lim;i++) ans[i]=ans[i]-c[i]*d[i]*2.0;
for(int i=0;i<lim;i++) c[i]=d[i]=complex(0,0);
for(int i=0;i<m;i++) c[i]=complex(a[i],0);
for(int i=0;i<n;i++) d[i]=complex(b[i]*b[i]*b[i],0);
FFT(c,1),FFT(d,1);
for(int i=0;i<lim;i++) ans[i]=ans[i]+c[i]*d[i];
FFT(ans,-1);
for(int i=m-1;i<n;i++) if(fabs(ans[i].x)<=0.5) s[++top]=i-m+2;
printf("%d\n",top);
for(int i=1;i<=top;i++) printf("%d ",s[i]);
return 0;
}