最佳团体-分数规划,树形背包

本文深入解析了P4322最佳团体问题的解题思路,采用分数规划结合树形背包的算法,详细阐述了dp状态转移方程及其实现细节,通过代码示例展示了双精度浮点数初始化方法。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

P4322 最佳团体

题目描述

题目描述

题解

分数规划+树形背包判断
我们令dp[i][j]dp[i][j]dp[i][j]表示枚举到第iii个节点,选了jjj个人的最大值
那么就可以得出转移方程:dp[i][j+k]=max(dp[i][j+k],dp[i][j]+dp[w][k])dp[i][j+k]=max(dp[i][j+k],dp[i][j]+dp[w][k])dp[i][j+k]=max(dp[i][j+k],dp[i][j]+dp[w][k])kkkiii的子节点
注意:
1,对double类型赋初值的方法

代码

#include<bits/stdc++.h>
#define M 2509
using namespace std;
int tot,n,k,first[M],to[M<<1],nxt[M<<1],size[M];
double l=0,r=10001,a[M],b[M],dp[M][M],A[M],B[M];
const double eps=1e-5;
int read(){
	int f=1,re=0;
	char ch;
	for(ch=getchar();!isdigit(ch)&&ch!='-';ch=getchar());
	if(ch=='-'){f=-1,ch=getchar();}
	for(;isdigit(ch);ch=getchar()) re=(re<<3)+(re<<1)+ch-'0';
	return re*f; 
}
void add(int x,int y){
	nxt[++tot]=first[x];
	first[x]=tot;
	to[tot]=y;
}
void dfs(int u,int fa){
	size[u]=1,dp[u][0]=0,dp[u][1]=A[u];
	for(int i=first[u];i;i=nxt[i]){
		int v=to[i];
		if(v==fa) continue;
		dfs(v,u);
		for(int j=1;j<=size[u]+size[v];j++) B[j]=dp[0][M-1];
		for(int j=1;j<=size[u];j++)
			for(int k=0;k<=size[v];k++)
			 	B[j+k]=max(B[j+k],dp[u][j]+dp[v][k]);
		size[u]+=size[v];
		for(int j=1;j<=size[u];j++) dp[u][j]=B[j];
	}
}
int main(){
	k=read(),n=read();
	for(int i=1;i<=n;i++){
		a[i]=read(),b[i]=read();int x=read();
		add(i,x),add(x,i);
	}
	while(r-l>eps){
		double mid=(l+r)/2;
		for(int i=1;i<=n;i++) A[i]=b[i]-a[i]*mid;
		memset(dp,0xc2,sizeof(dp)),dfs(0,0);
		if(dp[0][k+1]>eps) l=mid;
		else r=mid;
	} printf("%.3lf\n",r);
	return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值