支线剧情-上下界网络流
题目描述
题解
有源汇有上下界最小费用可行流
答案即为:新图中求出的费用
+
+
+原图中边的下界
∗
*
∗边的费用
上下界网络流推荐博客:
1,https://blog.youkuaiyun.com/clove_unique/article/details/54884437
2,https://www.cnblogs.com/liu-runda/p/6262832.html
代码实现
#include<bits/stdc++.h>
#define M 200009
using namespace std;
int nxt[M],first[M],to[M],w[M],f[M],tot=1;
int vis[M],d[M],S,T,s,t,dis[M],n,now[M],ret;
const int inf=1e9+7;
void add(int x,int y,int z,int v){
nxt[++tot]=first[x],first[x]=tot,to[tot]=y,w[tot]=z,f[tot]=v;
nxt[++tot]=first[y],first[y]=tot,to[tot]=x,w[tot]=0,f[tot]=-v;
}
bool bfs(){
for(int i=0;i<=T;i++) dis[i]=inf;
memset(vis,0,sizeof(vis));
dis[S]=0,vis[S]=1;
queue<int>q;
q.push(S),now[S]=first[S];
while(q.size()){
int u=q.front();
q.pop(),vis[u]=0;
for(int i=first[u];i;i=nxt[i]){
int v=to[i];
if(w[i]&&dis[v]>dis[u]+f[i]){
dis[v]=dis[u]+f[i];
now[v]=first[v];
if(!vis[v]) q.push(v),vis[v]=1;
}
}
}return dis[T]!=inf;
}
int dfs(int x,int flow){
if(x==T) return flow;
int rest=flow,i;
vis[x]=1;
for(i=now[x];i&&rest;i=nxt[i]){
int v=to[i];
if(!vis[v]&&w[i]&&dis[v]==dis[x]+f[i]){
int k=dfs(v,min(rest,w[i]));
if(k==0){dis[v]=0;continue;}
w[i]-=k,w[i^1]+=k,rest-=k;
ret+=k*f[i];
}
}now[x]=i,vis[x]=0;
return flow-rest;
}
int dinic(){
int ans=0,flow=0;
while(bfs()){
memset(vis,0,sizeof(vis));
while(flow=dfs(S,inf)) ans+=flow;
}return ret;
}
int main(){
scanf("%d",&n);
int x,y,z;
s=1,t=n+1,S=n+2,T=n+3;
for(int i=1;i<=n;i++){
scanf("%d",&x);
for(int j=1;j<=x;j++){
scanf("%d%d",&y,&z);
d[i]--,d[y]++,ret+=z;
add(i,y,inf,z);
}
}for(int i=2;i<=n;i++) add(i,t,inf,0);
for(int i=1;i<=n;i++){
if(d[i]>0) add(S,i,d[i],0);
if(d[i]<0) add(i,T,-d[i],0);
}add(t,s,inf,0);
printf("%d\n",dinic());
return 0;
}