MobileNet-SSD网络解析

本文详细解析了MobileNet-SSD的网络结构,与MobileNet v1和VGG16-SSD进行比较。MobileNet-SSD在保持低计算量的同时,通过减小特征图分辨率来实现目标检测。此外,文章还探讨了BN层的合并,解释了如何减少预测时的运算量。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

网络结构

参照 MobileNet-SSD(chuanqi305)的caffe模型(prototxt文件) | github,绘制出MobileNet-SSD的整体结构如下(忽略一些参数细节):

0

图片中从上到下分别是MobileNet v1模型(统一输入大小为300x300)、chuanqi305的Mobilenet-SSD网络、VGG16-SSD网络。且默认都是用3x3大小的卷积核,除了MobileNet-SSD的Conv14_1、Conv15_1、Conv16_1、Conv17_1和VGG16-SSD的Conv8_1、Conv9_1、Conv10_1、Conv11_1用的是1x1大小的卷积核。
图中每个立方体代表对应层的输出特征图;

  • 首先观察基础网络部分
    MobileNet-SSD从Conv0到Conv13的配置与MobileNet v1模型是完全一致的,相当于只是去掉MobileNet v1最后的全局平均池化、全连接层和Softmax层;
  • 再看SSD部分
    • 在VGG16-SSD的方案中,用Conv6和Conv7分别替代了原VGG16的FC6和FC7;
    • MobileNet-SSD和VGG16-SSD都是从六个不同尺度的特征图上提取特征来做Detections,它们的大小为:
    •   MobileNet-SSD   |   VGG16-SSD
    •   ----------------+-----------------
    •   19 x 19 x  512  |   38 x 38 x  512
    •   10 x 10 x 1024
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值