spring的beadPostProcesser接口的作用
BeanPostProcessor也称为Bean后置处理器,它是Spring中定义的接口,在Spring容器的创建过程中(具体为Bean初始化前后)会回调BeanPostProcessor中定义的两个方法。BeanPostProcessor的源码如下:
public interface BeanPostProcessor {
Object postProcessBeforeInitialization(Object bean, String beanName) throws BeansException;
Object postProcessAfterInitialization(Object bean, String beanName) throws BeansException;
}
其中postProcessBeforeInitialization方法会在每一个bean对象的初始化方法调用之前回调;postProcessAfterInitialization方法会在每个bean对象的初始化方法调用之后被回调。
链接:https://www.jianshu.com/p/6a48675ef7a3
spring解决循环依赖
Java中的循环依赖分两种,一种是构造器的循环依赖,另一种是属性的循环依赖。
构造器的循环依赖就是在构造器中有属性循环依赖
这种循环依赖没有什么解决办法,因为JVM虚拟机在对类进行实例化的时候,需先实例化构造器的参数,而由于循环引用这个参数无法提前实例化,故只能抛出错误。
Spring解决的循环依赖就是指属性的循环依赖
Spring通过将实例化后的对象提前暴露给Spring容器中的singletonFactories,解决了循环依赖的问题
https://www.cnblogs.com/zzq6032010/p/11406405.html
java1.7的hashMap和java1.8的区别
JDK1.7中
使用一个Entry数组来存储数据,用key的hashcode取模来决定key会被放到数组里的位置,如果hashcode相同,或者hashcode取模后的结果相同(hash collision),那么这些key会被定位到Entry数组的同一个格子里,这些key会形成一个链表。
在hashcode特别差的情况下,比方说所有key的hashcode都相同,这个链表可能会很长,那么put/get操作都可能需要遍历这个链表
也就是说时间复杂度在最差情况下会退化到O(n)
JDK1.8中
使用一个Node数组来存储数据,但这个Node可能是链表结构,也可能是红黑树结构
如果插入的key的hashcode相同,那么这些key也会被定位到Node数组的同一个格子里。
如果同一个格子里的key不超过8个,使用链表结构存储。
如果超过了8个,那么会调用treeifyBin函数,将链表转换为红黑树。
那么即使hashcode完全相同,由于红黑树的特点,查找某个特定元素,也只需要O(log n)的开销
也就是说put/get的操作的时间复杂度最差只有O(log n)
听起来挺不错,但是真正想要利用JDK1.8的好处,有一个限制:
key的对象,必须正确的实现了Compare接口
如果没有实现Compare接口,或者实现得不正确(比方说所有Compare方法都返回0)
那JDK1.8的HashMap其实还是慢于JDK1.7的
简单的测试数据如下:
向HashMap中put/get 1w条hashcode相同的对象
JDK1.7: put 0.26s,get 0.55s
JDK1.8(未实现Compare接口):put 0.92s,get 2.1s
但是如果正确的实现了Compare接口,那么JDK1.8中的HashMap的性能有巨大提升,这次put/get 100W条hashcode相同的对象
JDK1.8(正确实现Compare接口,):put/get大概开销都在320ms左右
为什么要这么操作呢?
我认为应该是为了避免Hash Collision DoS攻击
Java中String的hashcode函数的强度很弱,有心人可以很容易的构造出大量hashcode相同的String对象。
如果向服务器一次提交数万个hashcode相同的字符串参数,那么可以很容易的卡死JDK1.7版本的服务器。
但是String正确的实现了Compare接口,因此在JDK1.8版本的服务器上,Hash Collision DoS不会造成不可承受的开销。
https://www.cnblogs.com/stevenczp/p/7028071.html
红黑树的结构和特性
二叉查找树、
Lock和AQS、
CAS和AtomicInteger、
线程池的配置参数、
java的4种引用类型、
一,强引用
二,软引用
三,弱引用
四,虚引用
五,引用队列(ReferenceQueue)
https://www.cnblogs.com/liyutian/p/9690974.html
ThreadLocal的使用场景、
ThreadLoal 变量,它的基本原理是,同一个 ThreadLocal 所包含的对象(对ThreadLocal< String >而言即为 String 类型变量),在不同的 Thread 中有不同的副本(实际是不同的实例,后文会详细阐述)。这里有几点需要注意
因为每个 Thread 内有自己的实例副本,且该副本只能由当前 Thread 使用。这是也是 ThreadLocal 命名的由来
既然每个 Thread 有自己的实例副本,且其它 Thread 不可访问,那就不存在多线程间共享的问题
既无共享,何来同步问题,又何来解决同步问题一说?
会不会内存泄漏、
mysql的索引结构、
索引是帮助MySQL高效获取数据的排好序的数据结构
B+Tree存储结构,只有叶子节点存储数据
新的B+树结构没有在所有的节点里存储记录数据,而是只在最下层的叶子节点存储,上层的所有非叶子节点只存放索引信息,这样的结构可以让单个节点存放下更多索引值,增大度Degree的值,提高命中目标记录的几率。
这种结构会在上层非叶子节点存储一部分冗余数据,但是这样的缺点都是可以容忍的,因为冗余的都是索引数据,不会对内存造成大的负担。
B+树和B树的区别、
B+树是B-树的变体,也是一种多路搜索树, 它与 B- 树的不同之处在于:
1.所有关键字存储在叶子节点出现,内部节点(非叶子节点并不存储真正的 data)
2.为所有叶子结点增加了一个链指针
sql优化、
1.对查询进行优化,应尽量避免全表扫描,首先应考虑在 where 及 order by 涉及的列上建立索引。
2.应尽量避免在 where 子句中对字段进行 null 值判断,否则将导致引擎放弃使用索引而进行全表扫描,如:
select id from t where num is null
可以在num上设置默认值0,确保表中num列没有null值,然后这样查询:
select id from t where num=0
3.应尽量避免在 where 子句中使用!=或<>操作符,否则将引擎放弃使用索引而进行全表扫描。
4.应尽量避免在 where 子句中使用 or 来连接条件,否则将导致引擎放弃使用索引而进行全表扫描,如:
select id from t where num=10 or num=20
可以这样查询:
select id from t where num=10
union all
select id from t where num=20
5.in 和 not in 也要慎用,否则会导致全表扫描,如:
select id from t where num in(1,2,3)
对于连续的数值,能用 between 就不要用 in 了:
select id from t where num between 1 and 3
6.下面的查询也将导致全表扫描:
select id from t where name like ‘%abc%’
7.应尽量避免在 where 子句中对字段进行表达式操作,这将导致引擎放弃使用索引而进行全表扫描。如:
select id from t where num/2=100
应改为:
select id from t where num=100*2
8.应尽量避免在where子句中对字段进行函数操作,这将导致引擎放弃使用索引而进行全表扫描。如:
select id from t where substring(name,1,3)=‘abc’–name以abc开头的id
应改为:
select id from t where name like ‘abc%’
9.不要在 where 子句中的“=”左边进行函数、算术运算或其他表达式运算,否则系统将可能无法正确使用索引。
10.在使用索引字段作为条件时,如果该索引是复合索引,那么必须使用到该索引中的第一个字段作为条件时才能保证系统使用该索引,否则该索引将不会被使用,并且应尽可能的让字段顺序与索引顺序相一致。
11.不要写一些没有意义的查询,如需要生成一个空表结构:
select col1,col2 into #t from t where 1=0
这类代码不会返回任何结果集,但是会消耗系统资源的,应改成这样:
create table #t(…)
12.很多时候用 exists 代替 in 是一个好的选择:
select num from a where num in(select num from b)
用下面的语句替换:
select num from a where exists(select 1 from b where num=a.num)
13.并不是所有索引对查询都有效,SQL是根据表中数据来进行查询优化的,当索引列有大量数据重复时,SQL查询可能不会去利用索引,如一表中有字段sex,male、female几乎各一半,那么即使在sex上建了索引也对查询效率起不了作用。
14.索引并不是越多越好,索引固然可以提高相应的 select 的效率,但同时也降低了 insert 及 update 的效率,
因为 insert 或 update 时有可能会重建索引,所以怎样建索引需要慎重考虑,视具体情况而定。
一个表的索引数最好不要超过6个,若太多则应考虑一些不常使用到的列上建的索引是否有必要。
15.尽量使用数字型字段,若只含数值信息的字段尽量不要设计为字符型,这会降低查询和连接的性能,并会增加存储开销。
这是因为引擎在处理查询和连接时会逐个比较字符串中每一个字符,而对于数字型而言只需要比较一次就够了。
16.尽可能的使用 varchar 代替 char ,因为首先变长字段存储空间小,可以节省存储空间,
其次对于查询来说,在一个相对较小的字段内搜索效率显然要高些。
17.任何地方都不要使用 select * from t ,用具体的字段列表代替“*”,不要返回用不到的任何字段。
18.避免频繁创建和删除临时表,以减少系统表资源的消耗。
19.临时表并不是不可使用,适当地使用它们可以使某些例程更有效,例如,当需要重复引用大型表或常用表中的某个数据集时。但是,对于一次性事件,最好使用导出表。
20.在新建临时表时,如果一次性插入数据量很大,那么可以使用 select into 代替 create table,避免造成大量 log ,
以提高速度;如果数据量不大,为了缓和系统表的资源,应先create table,然后insert。
21.如果使用到了临时表,在存储过程的最后务必将所有的临时表显式删除,先 truncate table ,然后 drop table ,这样可以避免系统表的较长时间锁定。
22.尽量避免使用游标,因为游标的效率较差,如果游标操作的数据超过1万行,那么就应该考虑改写。
23.使用基于游标的方法或临时表方法之前,应先寻找基于集的解决方案来解决问题,基于集的方法通常更有效。
24.与临时表一样,游标并不是不可使用。对小型数据集使用 FAST_FORWARD 游标通常要优于其他逐行处理方法,尤其是在必须引用几个表才能获得所需的数据时。
在结果集中包括“合计”的例程通常要比使用游标执行的速度快。如果开发时间允许,基于游标的方法和基于集的方法都可以尝试一下,看哪一种方法的效果更好。
25.尽量避免大事务操作,提高系统并发能力。
26.尽量避免向客户端返回大数据量,若数据量过大,应该考虑相应需求是否合理。
执行过程explain分析、
https://www.cnblogs.com/huchong/p/10235260.html
redis的5种数据结构、
1.String 字符串类型
2.Hash (哈希)
3.链表
4.Set 集合
5.zset 有序集合
缓存淘汰策略、
原文链接:https://blog.youkuaiyun.com/ligupeng7929/article/details/79603060
将 Redis 用作缓存时, 如果内存空间用满, 就会自动驱逐老的数据。 默认情况下 memcached 就是这种方式, 大部分开发者都比较熟悉。
LRU是Redis唯一支持的回收算法. 本文详细介绍用于限制最大内存使用量的 maxmemory 指令, 并深入讲解 Redis 所使用的近似LRU算法。
maxmemory 配置指令
maxmemory 用于指定 Redis 能使用的最大内存。既可以在 redis.conf 文件中设置, 也可以在运行过程中通过 CONFIG SET 命令动态修改。
noeviction: 不删除策略, 达到最大内存限制时, 如果需要更多内存, 直接返回错误信息。 大多数写命令都会导致占用更多的内存(有极少数会例外, 如 DEL )。
allkeys-lru: 所有key通用; 优先删除最近最少使用(less recently used ,LRU) 的 key。
volatile-lru: 只限于设置了 expire 的部分; 优先删除最近最少使用(less recently used ,LRU) 的 key。
allkeys-random: 所有key通用; 随机删除一部分 key。
volatile-random: 只限于设置了 expire 的部分; 随机删除一部分 key。
volatile-ttl: 只限于设置了 expire 的部分; 优先删除剩余时间(time to live,TTL) 短的key。
redis的定期删除+惰性删除、
-
定时删除
创建一个定时器,当key设置有过期时间,且过期时间到达时,由定时器任务立即执行对键的删除操作
优点:节约内存,到时就删除,快速释放掉不必要的内存占用
缺点:CPU压力很大,无论CPU此时负载量多高,均占用CPU,会影响redis服务器响应时间和指令吞吐量
总结:用处理器性能换取存储空间 (拿时间换空间) -
惰性删除
数据到达过期时间,不做处理。等下次访问该数据时,如果未过期,返回数据 ;发现已过期,删除,返回不存在。
优点:节约CPU性能,发现必须删除的时候才删除
缺点:内存压力很大,出现长期占用内存的数据
总结:用存储空间换取处理器性能(拿空间换时间)
- 定期删除
两种方案都走极端,有没有折中方案?
周期性轮询redis库中的时效性数据,采用随机抽取的策略,利用过期数据占比的方式控制删除频度
特点1:CPU性能占用设置有峰值,检测频度可自定义设置
特点2:内存压力不是很大,长期占用内存的冷数据会被持续清理
总结:周期性抽查存储空间 (随机抽查,重点抽查)
redis的bigKey解决方案
new一个对象的步骤
https://www.cnblogs.com/gjmhome/p/11401397.html