BZOJ-1227 虔诚的墓主人 树状数组+离散化+组合数学

本文探讨了一片新造公墓的管理问题,公墓被看作是N×M的矩形网格,每个格点可能种着常青树或为空墓地。文章主要关注如何计算每个墓地的虔诚度,即以该墓地为中心的十字架数量,并求出所有墓地虔诚度总和。通过离散化和组合数学的方法,实现高效计算。最后,提供了一个样例输入输出,用于验证算法正确性。

1227: [SDOI2009]虔诚的墓主人
Time Limit: 5 Sec Memory Limit: 259 MB
Submit: 914 Solved: 431
[Submit][Status][Discuss]

Description
小W 是一片新造公墓的管理人。公墓可以看成一块N×M 的矩形,矩形的每个格点,要么种着一棵常青树,要么是一块还没有归属的墓地。当地的居民都是非常虔诚的基督徒,他们愿意提前为自己找一块合适墓地。为了体现自己对主的真诚,他们希望自己的墓地拥有着较高的虔诚度。一块墓地的虔诚度是指以这块墓地为中心的十字架的数目。一个十字架可以看成中间是墓地,墓地的正上、正下、正左、正右都有恰好k 棵常青树。小W 希望知道他所管理的这片公墓中所有墓地的虔诚度总和是多少

Input
第一行包含两个用空格分隔的正整数N 和M,表示公墓的宽和长,因此这个矩形公墓共有(N+1) ×(M+1)个格点,左下角的坐标为(0, 0),右上角的坐标为(N, M)。第二行包含一个正整数W,表示公墓中常青树的个数。第三行起共W 行,每行包含两个用空格分隔的非负整数xi和yi,表示一棵常青树的坐标。输入保证没有两棵常青树拥有相同的坐标。最后一行包含一个正整数k,意义如题目所示。

Output
包含一个非负整数,表示这片公墓中所有墓地的虔诚度总和。为了方便起见,答案对2,147,483,648 取模。

Sample Input
5 6
13
0 2
0 3
1 2
1 3
2 0
2 1
2 4
2 5
2 6
3 2
3 3
4 3
5 2
2

Sample Output
6

HINT
图中,以墓地(2, 2)和(2, 3)为中心的十字架各有3个,即它们的虔诚度均为3。其他墓地的虔诚度为0。 对于30%的数据,满足1 ≤ N, M ≤ 1,000。对于60%的数据,满足1 ≤ N, M ≤ 1,000,000。对于100%的数据,满足1 ≤ N, M ≤ 1,000,000,000,0 ≤ xi ≤ N,0 ≤ yi ≤ M,1 ≤ W ≤ 100,000, 1 ≤ k ≤ 10。存在50%的数据,满足1 ≤ k ≤ 2。存在25%的数据,满足1 ≤ W ≤ 10000。

Source

题解: 一看数据范围,肯定要离散化,熟练的打上,然后开始做。 这里要用到组合来进行求值,大体上的思路是: 如果a,b在同一行,则ans+=c(l[a]+1(包括a),k)*c(r[b]+1,k)再分别乘上ab间的每一个点的c(u[i],k)*c(d[i],k)
l[a],r[a],u[a],d[a]表示一个点上下左右的点数,可以预处理,也可以边做边记录
需要优化时间复杂度,于是要用树状数组维护a到b所有点的c(u[i],k)*c(d[i],k)之和
从左往右处理某行的某一个点时,要将树状数组中该点横坐标位置上的数进行修改
修改的值为就是现在的c(u[i],k)*c[d[i],k]减去原来的,也就是c(u[i],k)*c[d[i],k]-c(u[i]+1,k)*c[d[i]-1,k]

后来发现自己的离散似乎有些不适合,只能1AC19WA,于是改成黄学长的方式才能过

code:

#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<cmath>
using namespace std;
int read()
{
    int x=0,f=1; char ch=getchar();
    while (ch<'0' || ch>'9') {if (ch=='-') f=-1; ch=getchar();}
    while (ch>='0' && ch<='9') {x=x*10+ch-'0'; ch=getchar();}
    return x*f;
}
#define maxw 100010
#define p 2147483648LL
int n,m,w,k,l;
struct data
{
    int x,y;
    bool operator < (const data & A) const
        {
            if (y==A.y) return x<A.x;
            return y<A.y;
        }
}tr[maxw];
long long tree[maxw*2],C[maxw*2][15],ans;
int ls[maxw*2],cnt,num,now[maxw*2];
int xx[maxw*2],yy[maxw*2];

int lowbit(int x)
{
    return x&(-x);
}
void add(int x,int dat)
{
    for (int i=x; i<=w*2; i+=lowbit(i)) tree[i]=(tree[i]+dat)%p;
}
long long query(int x)
{
    long long re=0;
    for (int i=x; i>0; i-=lowbit(i)) re=(re+tree[i])%p;
    return re;
}

int getloc(int dat)
{
    int l=1,r=cnt;
    while (l<=r)
        {
            int mid=(l+r)>>1;
            if (ls[mid]<dat) l=mid+1;
            else if (ls[mid]>dat) r=mid-1;
            else return mid;            
        }
}

void getC()
{
    C[0][0]=1;
    for (int i=1; i<=w; i++)
        {
            C[i][0]=1;
            for (int j=1; j<=min(k,i); j++)
                C[i][j]=(C[i-1][j]+C[i-1][j-1])%p;
        }
}

int main()
{
    n=read(),m=read();
    w=read();
    for (int i=1; i<=w; i++) ls[++cnt]=tr[i].x=read(),ls[++cnt]=tr[i].y=read();
    k=read();
    sort(ls+1,ls+cnt+1);
    //for (int i=2; i<=cnt; i++) if (ls[i]!=ls[i-1]) ls[++num]=ls[i];
    //for (int i=1; i<=w; i++) tr[i].x=getloc(tr[i].x),tr[i].y=getloc(tr[i].y);
    for (int i=1; i<=w; i++) xx[getloc(tr[i].x)]++,yy[getloc(tr[i].y)]++;
    getC(); sort(tr+1,tr+w+1);
    //for (int i=1; i<=w; i++)
        //printf("%d %d\n",getloc(tr[i].x),getloc(tr[i].y));
    for(int i=1;i<=w;i++)
        {
            if(i>1 && tr[i].y==tr[i-1].y)
                l++,ans+=(query(getloc(tr[i].x)-1)-query(getloc(tr[i-1].x)))*(C[l][k]*C[yy[getloc(tr[i].y)]-l][k]),ans%=p;
            else l=0;
            int loc=getloc(tr[i].x); now[loc]++;
            int delta=(C[now[loc]][k]*C[xx[loc]-now[loc]][k]-C[now[loc]-1][k]*C[xx[loc]-now[loc]+1][k])%p;
            add(loc,delta);
        }
    if (ans<0) ans+=p; 
    printf("%lld\n",ans);
    return 0;
} 
### BZOJ1728 Two-Headed Cows (双头牛) 的解题思路 #### 题目概述 BZOJ1728 是一道经典的图论问题,题目描述了一群双头牛之间的关系网络。每只双头牛可以看作是一个节点,而它们的关系则构成了边。目标是从这些关系中找出满足特定条件的最大子集。 此问题的核心在于利用 **二分查找** 和 **染色法** 来验证是否存在符合条件的子图结构[^1]。 --- #### 解题核心概念 ##### 1. 图模型构建 该问题可以通过无向图建模,其中每个顶点代表一只双头牛,边表示两只双头牛之间存在某种关联。最终的目标是在这个图中找到最大的独立集合(Independent Set),即任意两个顶点都不相连的一组顶点[^2]。 ##### 2. 二分查找的应用 为了高效求解最大独立集大小 \( k \),采用二分策略来逐步逼近最优解。具体来说,在区间 [0, n] 中通过不断调整上下界寻找可能的最大值 \( k \)[^3]。 ##### 3. 染色法验证可行性 对于当前假设的最大独立集大小 \( mid \),尝试从原图中选取恰好 \( mid \) 个顶点构成候选集合,并检查其是否形成合法的独立集。这一过程通常借助 BFS 或 DFS 实现,同时配合颜色标记技术区分已访问状态以及检测冲突情况[^4]。 以下是基于 Python 的伪代码实现: ```python from collections import deque def bfs_coloring(graph, start_node): queue = deque() color_map = {} # 初始化起点的颜色为 0 color_map[start_node] = 0 queue.append(start_node) while queue: current = queue.popleft() for neighbor in graph[current]: if neighbor not in color_map: # 给邻居分配相反的颜色 color_map[neighbor] = 1 - color_map[current] queue.append(neighbor) elif color_map[neighbor] == color_map[current]: return False # 如果发现相邻节点有相同颜色,则无法完成有效染色 return True def is_possible_to_select_k(graph, nodes_count, target_size): from itertools import combinations all_nodes = list(range(nodes_count)) possible_combinations = combinations(all_nodes, target_size) for subset in possible_combinations: subgraph = {node: [] for node in subset} valid_subset = True for u in subset: for v in graph[u]: if v in subset and v != u: subgraph[u].append(v) # 对子图进行染色测试 colors_used = set() coloring_success = True for node in subset: if node not in colors_used: success = bfs_coloring(subgraph, node) if not success: coloring_success = False break if coloring_success: return True # 找到一个有效的组合即可返回成功标志 return False def binary_search_max_independent_set(graph, total_nodes): low, high = 0, total_nodes best_result = 0 while low <= high: mid = (low + high) // 2 if is_possible_to_select_k(graph, total_nodes, mid): best_result = mid low = mid + 1 else: high = mid - 1 return best_result ``` --- #### 复杂度分析 上述算法的时间复杂度主要取决于以下几个方面: - 枚举所有可能的子集规模:\( O(\binom{n}{k}) \), 其中 \( k \) 表示当前试探的独立集大小。 - 子图构造与染色检验操作:每次调用 `bfs_coloring` 函数需遍历整个子图,最坏情况下时间开销接近线性级别 \( O(k^2) \). 综合来看整体效率较高但仍有优化空间[^5]. --- #### 总结 通过对 BZOJ1728 进行深入剖析可知,合理运用二分加染色的方法能够显著提升解决问题的能力。这种方法不仅适用于本题场景下寻找最大独立集的任务需求,同时也可推广至其他相似类型的 NP 完全难题处理之中[^6]。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值