POJ2104 K-th Number —— 划分树(模板题)

POJ 2104 K-th Number 题解
本文提供了一种快速解决POJ 2104 K-th Number问题的方法,该问题要求在给定数组的指定区间内找到第K小的数。通过构建一种特殊的数据结构并使用递归分解技术,可以在较短时间内获得答案。

题目链接:http://poj.org/problem?id=2104.


K-th Number
Time Limit: 20000MS Memory Limit: 65536K
Total Submissions: 59744 Accepted: 20847
Case Time Limit: 2000MS

Description

You are working for Macrohard company in data structures department. After failing your previous task about key insertion you were asked to write a new data structure that would be able to return quickly k-th order statistics in the array segment. 
That is, given an array a[1...n] of different integer numbers, your program must answer a series of questions Q(i, j, k) in the form: "What would be the k-th number in a[i...j] segment, if this segment was sorted?" 
For example, consider the array a = (1, 5, 2, 6, 3, 7, 4). Let the question be Q(2, 5, 3). The segment a[2...5] is (5, 2, 6, 3). If we sort this segment, we get (2, 3, 5, 6), the third number is 5, and therefore the answer to the question is 5.

Input

The first line of the input file contains n --- the size of the array, and m --- the number of questions to answer (1 <= n <= 100 000, 1 <= m <= 5 000). 
The second line contains n different integer numbers not exceeding 10 9 by their absolute values --- the array for which the answers should be given. 
The following m lines contain question descriptions, each description consists of three numbers: i, j, and k (1 <= i <= j <= n, 1 <= k <= j - i + 1) and represents the question Q(i, j, k).

Output

For each question output the answer to it --- the k-th number in sorted a[i...j] segment.

Sample Input

7 3
1 5 2 6 3 7 4
2 5 3
4 4 1
1 7 3

Sample Output

5
6
3

Hint

This problem has huge input,so please use c-style input(scanf,printf),or you may got time limit exceed.

Source

Northeastern Europe 2004, Northern Subregion




代码如下:

#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <vector>
#include <cmath>
#include <queue>
#include <stack>
#include <map>
#include <string>
#include <set>
using namespace std;
typedef long long LL;
const int INF = 2e9;
const LL LNF = 9e18;
const int mod = 1e9+7;
const int MAXN = 1e5+10;

int tree[20][MAXN];
int sorted[MAXN];
int toleft[20][MAXN];

void build(int l, int r, int dep)
{
    if(l==r) return;
    int mid = (l+r)>>1;
    int same = mid-l+1;
    for(int i = l; i<=r; i++)
        if(tree[dep][i]<sorted[mid])
            same--;

    int lpos = l, rpos = mid+1;
    for(int i = l; i<=r; i++)
    {
        if(tree[dep][i]<sorted[mid])
            tree[dep+1][lpos++] = tree[dep][i];
        else if(tree[dep][i]==sorted[mid] && same>0)
        {
            tree[dep+1][lpos++] = tree[dep][i];
            same--;
        }
        else
            tree[dep+1][rpos++] = tree[dep][i];
        toleft[dep][i] = toleft[dep][l-1] + lpos - l;
    }

    build(l, mid, dep+1);
    build(mid+1, r, dep+1);
}

int query(int L, int R, int l, int r, int dep, int k)
{
    if(l==r) return tree[dep][l];
    int mid = (L+R)>>1;
    int cnt = toleft[dep][r] - toleft[dep][l-1];

    if(cnt>=k)
    {
        int newl = L + toleft[dep][l-1] - toleft[dep][L-1];
        int newr = newl + cnt - 1;
        return query(L, mid, newl, newr, dep+1, k);
    }
    else
    {
        int newr = r + toleft[dep][R] - toleft[dep][r];
        int newl = newr - (r-l-cnt);
        return query(mid+1, R, newl, newr, dep+1, k-cnt);
    }
}

int main()
{
    int n, m;
    while(scanf("%d%d",&n,&m)!=EOF)
    {
        memset(tree, 0, sizeof(tree));
        for(int i = 1; i<=n; i++)
        {
            scanf("%d",&tree[0][i]);
            sorted[i] = tree[0][i];
        }
        sort(sorted+1, sorted+1+n);
        build(1, n, 0);
        int s, t, k;
        while(m--)
        {
            scanf("%d%d%d",&s,&t,&k);
            printf("%d\n", query(1,n,s,t,0,k));
        }
    }
    return 0;
}


在C语言里,位左对齐右对齐一般在格式化输出时会用到,主要用于控制数据在输出时的位置。以下是相关介绍: ### 整型数据的左对齐右对齐 通过`printf`函数实现整型数据的左对齐右对齐右对齐是默认方式,在格式说明符`%`和`d`之间添加数字来规定输出宽度,若数字位数小于规定宽度,会在左边补空格;左对齐则需在数字前加`-`号,若数字位数小于规定宽度,会在右边补空格。 示例代码如下: ```c #include <stdio.h> int main() { // 右对齐。数字宽度为10,若不足10,在左边补足空格 printf("%10d\n", 1234); // 左对齐。数字宽度为10,若不足10,在右边补足空格 printf("%-10d\n", 1234); return 0; } ``` ### 不同输出长度的情况 当规定的输出宽度和数字实际位数不同时,有不同的处理方式。若规定宽度小于数字实际位数,会完整输出数字;若规定宽度大于数字实际位数,右对齐在左边补空格,左对齐在右边补空格。 示例代码如下: ```c #include <stdio.h> int main() { // -5是左对齐,输出长度为5。5是右对齐,输出长度为5 printf("%-5d %5d\n", 455, 455); printf("%-5d %5d\n", -123, -123); // 规定宽度小于实际位数,完整输出数字 printf("%-5d %5d\n", 987654, 987654); return 0; } ``` ### 其他数据类型的对齐 除整型外,其他数据类型也能实现左对齐右对齐。例如浮点数(`%f`)、字符串(`%s`)等,方法和整型一致。 示例代码如下: ```c #include <stdio.h> int main() { // 右对齐浮点数,宽度为10 printf("%10f\n", 3.14); // 左对齐浮点数,宽度为10 printf("%-10f\n", 3.14); // 右对齐字符串,宽度为10 printf("%10s\n", "hello"); // 左对齐字符串,宽度为10 printf("%-10s\n", "hello"); return 0; } ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值