There are N gas stations along a circular route, where the amount of gas at station i is gas[i].
You have a car with an unlimited gas tank and it costs cost[i] of
gas to travel from station i to its next station (i+1). You begin the journey with an empty tank at one of the gas stations.
Return the starting gas station's index if you can travel around the circuit once, otherwise return -1.
Note:
The solution is guaranteed to be unique.
环形路线上有N个加油站,每个加油站有汽油gas[i],从每个加油站到下一站消耗汽油cost[i],问从哪个加油站出发能够回到起始点,如果都不能则返回-1(注意,解是唯一的)。
代码
#include
<iostream>#include
<stdio.h>#include
<vector>using
namespace std;//
时间复杂度 O(n),空间复杂度 O(1)classSolution
{public: intcanCompleteCircuit(vector<int>
&gas, vector<int>
&cost) { inttotal
= 0; intj
= -1; for(inti
= 0,
sum = 0;
i < gas.size(); ++i) { sum
+= gas[i] - cost[i]; total
+= gas[i] - cost[i]; if(sum
< 0)
{ j
= i; sum
= 0; } } returntotal
>= 0?
j + 1:
-1; }};intmain()
{ Solution
solution; intresult; vector<int>
gas = {0,4,5}; vector<int>
cost = {1,2,6}; result
= solution.canCompleteCircuit(gas,cost); printf("Result:%d\n",result); return0;}
本文介绍了一种解决环形路线上寻找可行起点以完成一圈旅行的问题。通过一次遍历所有加油站,采用特定算法确保时间复杂度为O(n)且空间复杂度为O(1)。该算法能有效找到解决方案。
382

被折叠的 条评论
为什么被折叠?



