Spring AI 官方文档
标题看完文档应该了解了一些概念:
- model:模型。针对不同的任务,有不同的模型可以应用。
- Prompts :提示。是引导 AI 模型生成特定输出的语言输入基础。它不仅是用户输入的文本字符串,更是一种结构化的指令集,通过定义角色、上下文和任务目标,告诉模型 “如何思考” 和 “如何回应”。
- Prompt Templates :提示模板。Spring AI 为此使用了 OSS 库 StringTemplate。
- Embeddings :嵌入。一种将图片、语言等等抽象为数字表征。那么原本两个图片、或者文字等等之间的相似性,就能够通过数字之间的相似性计算完成。
- Tokens:AI 模型工作基本单位。比如一个长句子划分为多个token。但是token数量不要太多,否则计算量很大,而且我们调用的api也是以token为单位的。
- Structured Output:结构化输出-文档
- 你让 AI 返回 JSON 格式的天气数据,它可能输出一个看起来像 JSON 的字符串:
“{“city”:“北京”,“temperature”:30,“weather”:“晴天”}”
- 但这个输出本质上是字符串(String),而非编程语言能直接操作的 JSON 对象。即使在提示中要求 “返回 JSON”,AI 仍可能输出格式错误的内容(如缺少逗号、引号不匹配),导致解析失败。
- 结构化输出转换采用精心设计的提示,通常需要与模型进行多次交互才能获得所需的格式。
- 你让 AI 返回 JSON 格式的天气数据,它可能输出一个看起来像 JSON 的字符串:
Spring AI Alibaba
官方文档
Spring AI Alibaba 开源项目基于 Spring AI 构建,是阿里云通义系列模型及服务在 Java AI 应用开发领域的最佳实践,提供高层次的 AI API 抽象与云原生基础设施集成方案,帮助开发者快速构建 AI 应用。
简单示例
创建项目
勾选web
还需要引入阿里巴巴依赖
<?xml version="1.0" encoding="UTF-8"?>
<project xmlns="http://maven.apache.org/POM/4.0.0" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 https://maven.apache.org/xsd/maven-4.0.0.xsd">
<modelVersion>4.0.0</modelVersion>
<parent>
<groupId>org.springframework.boot</groupId>
<artifactId>spring-boot-starter-parent</artifactId>
<version>3.5.3</version>
<relativePath/> <!-- lookup parent from repository -->
</parent>
<groupId>com.dd.ai</groupId>
<artifactId>spring-ai-alibaba-demo</artifactId>
<version>0.0.1-SNAPSHOT</version>
<name>spring-ai-alibaba-demo</name>
<description>spring-ai-alibaba-demo</description>
<url/>
<licenses>
<license/>
</licenses>
<developers>
<developer/>
</developers>
<scm>
<connection/>
<developerConnection/>
<tag/>
<url/>
</scm>
<properties>
<java.version>17</java.version>
</properties>
<dependencies>
<dependency>
<groupId>org.springframework.boot</groupId>
<artifactId>spring-boot-starter-web</artifactId>
</dependency>
<dependency>
<groupId>org.springframework.boot</groupId>
<artifactId>spring-boot-starter-test</artifactId>
<scope>test</scope>
</dependency>
<!-- 引入Spring AI Alibaba相关依赖-->
<dependency>
<groupId>com.alibaba.cloud.ai</groupId>
<artifactId>spring-ai-alibaba-starter-dashscope</artifactId>
<version>1.0.0.2</version>
</dependency>
</dependencies>
<build>
<plugins>
<plugin>
<groupId>org.springframework.boot</groupId>
<artifactId>spring-boot-maven-plugin</artifactId>
</plugin>
</plugins>
</build>
</project>
配置文件
使用的平台:阿里云百炼(langchain4j第一篇有介绍)
此处需要申请APPID
DASHSCOPE_API_KEY: xx
APP_ID: x
server:
port: 8080
spring:
application:
name: spring-ai-demo
ai:
dashscope:
agent:
app-id: ${APP_ID} # 大模型应用ID,如未配置环境变量,请在这里替换为实际的值
api-key: ${DASHSCOPE_API_KEY} # 百炼API Key,如未配置环境变量,请在这里替换为实际的值
#workspace-id: ${WORKSPACE_ID} # 业务空间ID,可选,未配置时使用主账号空间
代码编写
package com.dd.ai.springaialibabademo.controller;
import com.alibaba.cloud.ai.dashscope.agent.DashScopeAgent;
import com.alibaba.cloud.ai.dashscope.agent.DashScopeAgentOptions;
import com.alibaba.cloud.ai.dashscope.api.DashScopeAgentApi;
import org.springframework.ai.chat.messages.AssistantMessage;
import org.springframework.ai.chat.model.ChatResponse;
import org.springframework.ai.chat.prompt.Prompt;
import org.springframework.beans.factory.annotation.Value;
import org.springframework.web.bind.annotation.GetMapping;
import org.springframework.web.bind.annotation.RequestMapping;
import org.springframework.web.bind.annotation.RequestParam;
import org.springframework.web.bind.annotation.RestController;
import org.slf4j.Logger;
import org.slf4j.LoggerFactory;
import reactor.core.publisher.Flux;
import java.util.List;
@RestController
@RequestMapping("/ai")
public class MyController {
private static final Logger logger = LoggerFactory.getLogger(MyController.class);
private DashScopeAgent agent;
@Value("${spring.ai.dashscope.agent.app-id}")
private String appId;
public MyController(DashScopeAgentApi dashscopeAgentApi) {
this.agent = new DashScopeAgent(dashscopeAgentApi);
}
@GetMapping(value="/chatStream", produces="text/event-stream")
public Flux<String> stream(@RequestParam(value = "message",
defaultValue = "你好,今天天气怎么样?") String message) {
return agent.stream(new Prompt(message, DashScopeAgentOptions.builder().withAppId(appId).build())).map(response -> {
if (response == null || response.getResult() == null) {
logger.error("chat response is null");
return "chat response is null";
}
AssistantMessage app_output = response.getResult().getOutput();
String content = app_output.getText();
DashScopeAgentApi.DashScopeAgentResponse.DashScopeAgentResponseOutput output = (DashScopeAgentApi.DashScopeAgentResponse.DashScopeAgentResponseOutput) app_output.getMetadata().get("output");
List<DashScopeAgentApi.DashScopeAgentResponse.DashScopeAgentResponseOutput.DashScopeAgentResponseOutputDocReference> docReferences = output.docReferences();
List<DashScopeAgentApi.DashScopeAgentResponse.DashScopeAgentResponseOutput.DashScopeAgentResponseOutputThoughts> thoughts = output.thoughts();
logger.info("content:\n{}\n\n", content);
return content;
});
}
@GetMapping("/chat")
public String call(@RequestParam(value = "message",
defaultValue = "你好,今天天气怎么样?") String message) {
ChatResponse response = agent.call(new Prompt(message, DashScopeAgentOptions.builder().withAppId(appId).build()));
if (response == null || response.getResult() == null) {
logger.error("chat response is null");
return "chat response is null";
}
AssistantMessage app_output = response.getResult().getOutput();
String content = app_output.getText();
DashScopeAgentApi.DashScopeAgentResponse.DashScopeAgentResponseOutput output = (DashScopeAgentApi.DashScopeAgentResponse.DashScopeAgentResponseOutput) app_output.getMetadata().get("output");
List<DashScopeAgentApi.DashScopeAgentResponse.DashScopeAgentResponseOutput.DashScopeAgentResponseOutputDocReference> docReferences = output.docReferences();
List<DashScopeAgentApi.DashScopeAgentResponse.DashScopeAgentResponseOutput.DashScopeAgentResponseOutputThoughts> thoughts = output.thoughts();
logger.info("content:\n{}\n\n", content);
if (docReferences != null && !docReferences.isEmpty()) {
for (DashScopeAgentApi.DashScopeAgentResponse.DashScopeAgentResponseOutput.DashScopeAgentResponseOutputDocReference docReference : docReferences) {
logger.info("{}\n\n", docReference);
}
}
if (thoughts != null && !thoughts.isEmpty()) {
for (DashScopeAgentApi.DashScopeAgentResponse.DashScopeAgentResponseOutput.DashScopeAgentResponseOutputThoughts thought : thoughts) {
logger.info("{}\n\n", thought);
}
}
return content;
}
}
控制台输出正常